Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Phys Chem Chem Phys ; 24(36): 21927-21953, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069200

ABSTRACT

The impact of the substitutional position of the chorine atom on the non-linear optical (NLO) response of chalcone derivatives is reported in this paper. Two thienyl-chalcone derivatives, (E)-3-(2,4-dichloro-phenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one (3A25D2) and (E)-3-(2,6-dichloro-phenyl)-1-(2,5-dichlorothiophen-3-yl)prop-2-en-1-one (3A25D4), are synthesized, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The photophysical and third-order NLO properties of 3A25D2 and 3A25D4 were investigated experimentally and computationally. The third-order NLO properties of 3A25D2 and 3A25D4 dissolved in N,N-dimethylformamide (DMF) were studied using Z-scan technique with 800 nm, 70 femtosecond (fs) pulses, and 532 nm continuous wave (CW) laser excitation. Closed aperture data recorded with fs pulses revealed positive non-linearity of both the compounds, while a strong negative non-linearity was observed in the CW regime. Open aperture data revealed that both the compounds exhibit positive non-linear absorption in fs pulsed and CW domains. Several wave function analysis methods, such as the inter-fragment charge transfer (IFCT) analysis, hole-electron analysis, (hyper)polarizability density analysis, and decomposition of the (hyper)polarizability contribution by numerical integration, were carried out to study the optical properties and charge transfer mechanism. In addition, the influence of the medium (liquid and crystalline) and external field wavelength on the optical properties of the two molecules were analyzed. Thermal and electronic contributions toward NLO properties were studied experimentally. The theoretically calculated cubic hyperpolarizability γ(-ω; ω, ω, -ω) in liquid for 3A25D2 and 3A25D4 were 4.69 × 10-34 and 2.68 × 10-34 esu, whereas the corresponding femtosecond regime Z-scan results gave 4.35 × 10-34 and 3.78 × 10-34 esu, respectively.

2.
iScience ; 25(8): 104849, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35996576

ABSTRACT

We report the fabrication and demonstrate the superior performance of robust, cost-effective, and biocompatible hierarchical Au nanoparticles (AuNPs) decorated Ag nanodendrites (AgNDs) on a Silicon platform for the trace-level detection of antibiotics (penicillin, kanamycin, and ampicillin) and DNA bases (adenine, cytosine). The hot-spot density dependence studies were explored by varying the AuNPs deposition time. These substrates' potential and versatility were explored further through the detection of crystal violet, ammonium nitrate, and thiram. The calculated limits of detection for CV, adenine, cytosine, penicillin G, kanamycin, ampicillin, AN, and thiram were 348 pM, 2, 28, 2, 56, 4, 5, and 2 nM, respectively. The analytical enhancement factors were estimated to be ∼107 for CV, ∼106 for the biomolecules, ∼106 for the explosive molecule, and ∼106 for thiram. Furthermore, the stability of these substrates at different time intervals is being reported here with surface-enhanced Raman spectroscopy/scattering (SERS) data obtained over 120 days.

3.
ACS Omega ; 4(18): 17691-17701, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31681875

ABSTRACT

We demonstrate an ultrafast laser-ablated hierarchically patterned silver nanoparticle/graphene oxide (AgNP/GO) hybrid surface-enhanced Raman scattering (SERS) substrate for highly sensitive and reproducible detection of an explosive marker 2,4-dinitrotoluene (2,4-DNT). A hierarchical laser-patterned silver sheet (Ag-S) is achieved by ultrafast laser ablation in air with pulse energies of 25, 50, and 100 µJ. Multiple laser pulses at a wavelength of 800 nm and a pulse repetition rate of 50 fs at 1 kHz are directly focused on Ag-S to produce and deposit AgNPs onto Ag-S. The surface morphology of ablated Ag-S was evaluated using atomic force microscopy, optical profilometry, and field emission scanning electron microscopy (FESEM). A rapid increase in the ablation rate with increasing laser energy was observed. Selected area Raman mapping is performed to understand the intensity and size distribution of AgNPs on Ag-S. Further, GO was spin-coated onto the AgNPs produced by ultrafast ablation on Ag-S. The hierarchical laser-patterned AgNP/GO hybrid structure was characterized using FESEM, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further, hierarchical laser-patterned AgNP/GO hybrid structures have been utilized as SERS-active substrates for the selective detection of 2,4-DNT, an explosive marker. The developed SERS-active sensor shows good stability and high sensitivity up to picomolar (pM) concentration range with a Raman intensity enhancement of ∼1010 for 2,4-DNT. The realized enhancement of SERS intensity is due to the cumulative effect of GO coated on Ag-S as a proactive layer and AgNPs produced by ultrafast ablation.

4.
RSC Adv ; 9(3): 1517-1525, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-35518042

ABSTRACT

Herein we demonstrate the synthesis of Ag-Cu alloy NPs through a consecutive two-step process; laser ablation followed by laser irradiation. Initially, pure Ag and Cu NPs were produced individually using the laser ablation in liquid technique (with ∼50 femtosecond pulses at 800 nm) which was followed by laser irradiation of the mixed Ag and Cu NPs in equal volume. These Ag, Cu, and Ag-Cu NPs were characterised by UV-visible absorption, HRTEM and XRD techniques. The alloy formation was confirmed by the presence of a single surface plasmon resonance peak in absorption spectra and elemental mapping using FESEM techniques. Furthermore, the results from surface enhanced Raman scattering (SERS) studies performed for the methylene blue (MB) molecule suggested that Ag-Cu alloy NPs demonstrate a higher enhancement factor (EF) compared to pure Ag/Cu NPs. Additionally, SERS studies of Ag-Cu alloy NPs were implemented for the detection of explosive molecules such as picric acid (PA - 5 µM), ammonium nitrate (AN - 5 µM) and the dye molecule methylene blue (MB - 5 nM). These alloy NPs exhibited superiority in the detection of various analyte molecules with good reproducibility and high sensitivity with EFs in the range of 104 to 107.

5.
Inorg Chem ; 55(7): 3530-40, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26977717

ABSTRACT

This article demonstrates a series of cyclometalated Ir(III) complexes of the type [Ir(III)(C^N)2(N^N)](PF6), where C^N is 2-phenylpyridine, and N^N corresponds to the 4,4'-π-conjugated 2,2'-bipyridine ancillary ligands. All these compounds were synthesized through splitting of the binuclear dichloro-bridged complex precursor, [Ir(C^N)2(µ-Cl)]2, with the appropriate bipyridine ligands followed by the anion exchange reaction. The linear and nonlinear absorption properties of the synthesized complexes were investigated. The absorption spectra of all the title complexes exhibit a broad structureless feature in the spectral region of 350-700 nm with two bands being well-resolved in most of the cases. The structures of all the compounds were modeled in dichloromethane using the density functional theory (DFT) algorithm. The nature of electronic transitions was further comprehended on the basis of time-dependent DFT analysis, which indicates that the origins of various bands are primarily due to intraligand charge transfer transitions along with mixed-metal and ligand-centered transitions. The synthesized compounds are found to be nonemissive at room temperature because of probable nonradiative deactivation pathways of the T1 state that compete with the radiative (phosphorescence) decay modes. However, the frozen solutions of compounds Ir(MS 3) and Ir(MS 5) phosphoresce at the near-IR region, the other complexes remaining nonemissive up to 800 nm wavelength window. The two-photon absorption studies on the synthesized complexes reveal that values of the absorption cross-section are quite notable and lie in the range of 300-1000 GM in the picosecond case and 45-186 GM in the femtosecond case.

6.
J Nanosci Nanotechnol ; 14(2): 1364-88, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24749430

ABSTRACT

We present an inclusive overview of the ultrafast ablation technique performed in liquids. Being a comparatively new method, we bring out the recent progress achieved, present the challenges ahead, and outline the future prospects for this technique. The review is conveniently divided into five parts: (a) a succinct preamble to the technique of ultrafast ablation in liquids (ULAL) is provided. A brief introduction to the conventional ns ablation is also presented for the sake of completeness (b) fundamental physical processes involved in this technique are elaborated (c) specific advantages of the technique compared to other physical and chemical methodologies are enumerated (d) applications of this technique in photonics; biomedical and explosives detection [using surface-enhanced Raman scattering (SERS)] is updated (e) future prospects describing the potential of this technique for creating unique nanoparticles (NPs) and nanostructures (NSs) for niche applications. We also discuss some of the recently reported significant results achieved in a variety of materials, especially metals, using this technique. Furthermore, we present some of our own experimental data obtained from ULAL of Ag, Cu, and Zn in a variety of liquids such as acetone, water, acetonitrile etc. The generated NPs (colloidal solutions) and NSs (on substrates) have been successfully utilized for nonlinear optical, SERS, and biomedical applications.


Subject(s)
Crystallization/methods , Lasers , Microfluidics/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Solutions/chemistry , Solutions/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Particle Size , Radiation Dosage , Surface Properties/radiation effects
7.
Org Lett ; 13(2): 188-91, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21166380

ABSTRACT

Naphthobipyrrole-derived porphycenes are synthesized for the first time via McMurry coupling of the ß-alkylated 2,9-diformylnaphthobipyrrole derivatives, which in turn were prepared easily from 2,3-naphthalene bishydrazine in four steps. Insertion of nickel into the porphycene core results in transformation of the rectangular N4-core into a square type geometry owing to the fusion of naphthalene moiety onto the bipyrrole entities. These porphycenes show large, intensity dependent three-photon absorption.

8.
Article in English | WPRIM (Western Pacific) | ID: wpr-625817

ABSTRACT

To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks.

SELECTION OF CITATIONS
SEARCH DETAIL
...