Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (203)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38345232

ABSTRACT

Tuina, as an external treatment method of traditional Chinese medicine, has been proven to have an analgesic effect on peripheral neuropathic pain (pNP) in clinical and basic research. However, the optimal time point for the analgesic effect of tuina may vary according to different injury sensations, affecting the exploration of the initiation mechanism of tuina analgesia. The research used minor chronic constriction injury (minor CCI) model rats to simulate pNP and used the intelligent tuina manipulation simulator to simulate the three methods (point-pressing, plucking, and kneading) and three acupoints (Yinmen BL37, Chengshan BL57, and Yanglingquan GB34) for performing tuina therapy. The study evaluated the changes in pain within 24 h and the optimal time point for the efficacy of tuina analgesia in rats with minor CCI models by testing cold sensitivity threshold (CST), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). Furthermore, the study evaluated IL-10 and TNF-α expression changes through Elisa detection. The results show that tuina has both immediate and sustained analgesic effects. For the three different injury sensitivity thresholds of CST, MWT, TWL, and two cytokines of IL-10 and TNF-α, the analgesic efficacy of tuina within 24 h after intervention is significantly different at different time points.


Subject(s)
Interleukin-10 , Neuralgia , Rats , Animals , Rats, Sprague-Dawley , Interleukin-10/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Neuralgia/therapy , Analgesics/pharmacology , Analgesics/therapeutic use
2.
Cytokine ; 176: 156537, 2024 04.
Article in English | MEDLINE | ID: mdl-38325140

ABSTRACT

OBJECTIVE: Inflammatory bowel disease (IBD) is listed by the World Health Organization as one of the modern intractable diseases. High mobility histone box 1 (HMGB1), originally described as a non-histone nucleoprotein involved in transcriptional regulation, was later identified as a pro-inflammatory cytokine that may contribute to the pathogenesis of inflammatory diseases such as IBD. Neutrophil extracellular traps (NETs) play an important role in the pathophysiology of IBD The aim of this study was to investigate the role of HMGB1 in experimental colitis mice and its potential mechanisms of action. METHODS: We first constructed the experimental colitis mouse model. Intervention of mice by rhHMGB1 supplementation or HMGB1 inhibition. The pathological morphology of the colon was observed using HE staining. Apoptosis of colonic tissue intestinal epithelial cells was evaluated using Tunel assay. The expression of HMGB1, ZO-1 and occludin in colon tissue was detected by immunohistochemistry, ELISA and western-blot. We also assessed the effects of HMGB1 on colonic injury, NETs content, macrophage polarization and inflammatory cells in mice. The regulatory effect of HMGB1 inhibition on NETs was assessed by combining DNase I. RESULTS: Inhibition of HMGB1 significantly reduced the inflammatory model in experimental colitis mice, as evidenced by reduced body weight, increased colonic length, reduced DAI scores and apoptosis, reduced inflammatory response, and improved colonic histopathological morphology and intestinal mucosal barrier function. Meanwhile, inhibition of HMGB1 was able to reduce the expression of CD86, citH3 and MPO and increase the expression of CD206 in the colonic tissue of mice. In addition, DNase I intervention was also able to improve colonic inflammation in mice. And the best effect was observed when DNase I and inhibition of HMGB1 were intervened together. CONCLUSION: Inhibition of HMGB1 ameliorates IBD by mediating NETs and macrophage polarization.


Subject(s)
Colitis , Extracellular Traps , HMGB1 Protein , Inflammatory Bowel Diseases , Animals , Mice , HMGB1 Protein/metabolism , Extracellular Traps/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/pathology , Disease Models, Animal , Macrophages/metabolism , Deoxyribonuclease I , Mice, Inbred C57BL , Dextran Sulfate
3.
Food Res Int ; 174(Pt 1): 113497, 2023 12.
Article in English | MEDLINE | ID: mdl-37986413

ABSTRACT

Wheat bran (WB) was fermented by Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus brevis (LAB-FWB), respectively, and their corresponding mechanism of obesity alleviation via gut microbiota and lipid metabolism was investigated. Results indicated LAB-FWB reduced body weight and serum glucose, followed by an improved lipid profile in obese mice compared with WB. All LAB-FWB interventions led to an enriched steroid hormone biosynthesis. LGG-WB significantly up-regulated genes in arachidonic acid metabolism, bile secretion and linoleic acid metabolism. While LB-WB down-regulated genes in PPAR signaling pathway and LP-WB up-regulated genes in linoleic acid metabolism, indicate their different regulation patterns. Furthermore, LAB-FWB reduced Firmicutes/Bacteroidetes ratio and returned HFD-dependent bacteria Colidextribacter and Erysipelatoclostridium to be normalized. Interestingly, LAB-FWB significantly enriched lipid-related pathways, benefiting xanthohumol, prostaglandin F2alpha, LPI 18:2 and lipoamide biosynthesis in lipid metabolic pathway, but not found in WB group. Among them, treatment with LGG-WB exerted the greatest function on alleviating obesity syndromes.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Mice , Animals , Diet, High-Fat , Lipid Metabolism , Dietary Fiber , Linoleic Acid , Obesity/metabolism , Probiotics/pharmacology
4.
Microb Biotechnol ; 16(12): 2345-2366, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882474

ABSTRACT

Human infections caused by Brucella (called brucellosis) are among the most common zoonoses worldwide with an estimated 500,000 cases each year. Since chronic Brucella infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As a facultative intracellular bacterium, Brucella is strictly parasitic in the host cell. Here, we performed proteomic and transcriptomic and metabolomic analyses on Brucella infected patients, mice and cells that provided an extensive "map" of physiological changes in brucellosis patients and characterized the metabolic pathways essential to the response to infection, as well as the associated cellular response and molecular mechanisms. This is the first report utilizing multi-omics analysis to investigate the global response of proteins and metabolites associated with Brucella infection, and the data can provide a comprehensive insight to understand the mechanism of Brucella infection. We demonstrated that Brucella increased nucleotide synthesis in the host, consistent with increased biomass requirement. We also identified IMPDH2, a key regulatory complex that controls nucleotide synthesis during Brucella infection. Pharmacological targeting of IMPDH2, the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits B. abortus growth both in vitro and in vivo. Through screening a library of natural products, we identified oxymatrine, an alkaloid obtained primarily from Sophora roots, is a novel and selective IMPDH2 inhibitor. In further in vitro bacterial inhibition assays, oxymatrine effectively inhibited the growth of B. abortus, which was impaired by exogenous supplementation of guanosine, a salvage pathway of purine nucleotides. This moderately potent, structurally novel compound may provide clues for further design and development of efficient IMPDH2 inhibitors and also demonstrates the potential of natural compounds from plants against Brucella.


Subject(s)
Brucella abortus , Brucellosis , Humans , Animals , Mice , Brucella abortus/metabolism , Proteomics , Multiomics , Brucellosis/microbiology , Brucellosis/prevention & control , Nucleotides/metabolism
5.
Sensors (Basel) ; 22(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36366130

ABSTRACT

With the vigorous development of information and communication technology, mobile internet has undergone tremendous changes. How to achieve global coverage of the network has become the primary problem to be solved. GEO satellites and LEO satellites, as important components of the satellite-ground network, can offer service for hotspots or distant regions where ground-based base stations' coverage is limited. Therefore, we build a satellite-ground network model, which transforms the satellite-ground network resource allocation problem into a matching issue between GEO satellites, LEO satellites, and users. A GEO satellite provides data backhaul for users, and a LEO satellite provides data transmission services according to users' requests. It is important to consider the relationships between all entities and establish a distributed scheme, so we propose a three-sided cyclic matching algorithm. It is confirmed by a large number of simulation experiments that the method suggested in this research is better than the conventional algorithm in terms of average delay, satellite revenue, and number of users served.

6.
Sensors (Basel) ; 22(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36146431

ABSTRACT

Along with the continuous revolution of energy production and energy consumption structures, the information data of smart grids have exploded, and effective solutions are urgently needed to solve the problem of power devices resource scheduling and energy efficiency optimization. In this paper, we propose a fifth generation (5G) and satellite converged network architecture for power transmission and distribution scenarios, where power transmission and distribution devices (PDs) can choose to forward power data to a cloud server data center via ground networks or space-based networks for power grid regulation and control. We propose a Joint Device Association and Power Control Online Optimization (JDAPCOO) algorithm to maximize the long-term system energy efficiency while guaranteeing the minimum transmission rate requirement of PDs. Since the formulated issue is a mixed integer nonconvex optimization problem with high complexity, we decompose the original problem into two subproblems, i.e., device association and power control, which are solved using a genetic algorithm and improved simulated annealing algorithm, respectively. Numerical simulation results show that when the number of PDs is 50, the proposed algorithm can improve the system energy efficiency by 105%, 545.05% and 835.26%, respectively, compared with the equal power allocation algorithm, random power allocation algorithm and random device association algorithm.

7.
China Pharmacy ; (12): 144-148, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-817352

ABSTRACT

OBJECTIVE:To establish a method for the content determination of apigenin and piperine in the water extract as well as eucalyptol and cumin aldehyde in the volatile oil of Mongolian medicine Sugmel- 3 decoction. METHODS :HPLC method was adopted for the content determination of apigenin and piperine. GC method was used for the content determination of eucalyptol and cumin aldehyde. The determination of HPLC method was performed on Agilent Eclipse XDB-C 18 column with mobile phase consisted of methanol- 0.1% phosphoric acid aqueous solution at flow rate of 1.0 mL/min;the detection wavelength was set at 225 nm(apigenin)and 342 nm(piperine);the column temperature was set at 30 ℃ with sample size of 10 μL. The determination of GC method was performed on Dimensions SH-Rtx- 1 capillary column with high-purity hydrogen as carrier gas ; the injector temperature was set at 270 ℃,with flow rate of carrier gas 1 mL/min by temperature programmed ;the sample size was 1 μL,and split ratio was 1 ∶ 10. RESULTS:The linear ranges of apigenin ,piperine,eucalyptol and cumin aldehyde were 12.5-200 μg/g/mL(r=0.999 6),87.3-139.7 μg/mL(r=0.999 9),136-2 187 μg/mL(r=0.999 9),39-635 μg/mL(r=0.999 9), respectively. The quantitation limits were 0.02,0.06,0.06,0.12 μg/mL,respectively. The detection limits were 0.01,0.02,0.03, 0.04 μg/mL. RSDs of precision,stability and reproducibility tests were all less than 4%. The recovery rates of the samples were 89.26% -97.26%(RSD=2.69% ,n=6),94.20% -104.01%(RSD=3.64% ,n=6),98.51% -110.11%(RSD=3.87% ,n=6), 95.76%-107.82%(RSD=4.12%,n=6),respectively. The contents of above components were 0.769-0.828,7.741-7.981,5.284 7- 5.846 6,1.038 6-1.101 2 mg/g(n=3). CONCLUSIONS:The established method is simple and feasible ,and can be used for quality control of different parts of Mongolian medicine Sugmel- 3 decoction.

8.
In Vitro Cell Dev Biol Anim ; 50(10): 918-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25164184

ABSTRACT

Sertoli cells have important functions in the testis for spermatogenesis. Thus, Sertoli cell culture systems have been established in many animals, such as rat, mouse, human, dog, cow, and pig, but a goat culture has not been reported. This study describes the isolation and culture of Sertoli cells from 3- to 4-month-old cashmere goat (Capra hircus) testes. These proliferative cells were expanded for 20 passages and repeatedly cryopreserved in vitro, in contrast to previous study in human, of which maintain steady growth for up to seven passages and only passages 1 to 5 could be refrozen. The microstructure and ultrastructure of the culture were typical of Sertoli cells, bearing irregular nuclei and a cytoplasm that was rich in smooth and rough endoplasmic reticulum, mitochondria, Golgi, lysosomes, lipid drops, and glycogenosomes. By immunofluorescence analysis, the all cells expressed SRY-related HMG box gene 9 (Sox9). Growth curves and 5-bromo-2'-deoxyuridine (BrdU) incorporation were used to analyze the proliferation of the cultured cells. With increasing passage times, the proliferation of the Sertoli cells declined, but the transcription of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF), and ß1-integrin was constant. By flow cytometry, the cells retained the ability to proliferate after 5 yr of cryopreservation. Thus, cashmere goat Sertoli cells have significant proliferative potential in vitro, expressing germ cell regulatory factors and have important applications in studying Sertoli cell-germ cell interactions, spermatogenesis, reproductive toxicology, and male infertility.


Subject(s)
Cell Culture Techniques/methods , Goats , Sertoli Cells/cytology , Animals , Male
9.
Cell Biol Int ; 38(12): 1403-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25044179

ABSTRACT

Tribbles are a family of signal-regulating proteins shown to coordinate the action and the suppression of different pathways. Tribbles homolog 3 (Trib3), the best-studied member of the mammalian tribble family, has a key function in determining cell fate when responding to environmental challenges. Trib3 effects are also modulated by its direct interaction with other signaling molecules. We found that Trib3 is highly expressed in the early development of rat testis, at just the time when the gonocytes resume proliferation to give rise to A spermatogonia. Immunofluorescence staining of cross-sections of rat testis and cultured spermatogonial stem cells (SSCs) also confirmed that Trib3 is expressed in rat SSCs.


Subject(s)
Cell Differentiation/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Spermatogenesis/physiology , Spermatogonia/metabolism , Stem Cells/metabolism , Testis/metabolism , Animals , Cells, Cultured , Male , Protein Serine-Threonine Kinases/metabolism , Rats , Testis/growth & development , Time Factors
10.
In Vitro Cell Dev Biol Anim ; 47(8): 593-600, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21853397

ABSTRACT

Spermatogonial stem cells (SSCs) maintain gamete production in the testes throughout adult life by balancing self-renewal and differentiation. In vitro culture of SSCs is a crucial technique for gene manipulation of SSCs to generate transgenic animals, for transplantation of SSCs to restore male fertility for infertile man, and for generation of pluripotent stem cells from SSCs to differentiate into various cell lineages. Isolation of highly purified SSCs is an all-important component for development of these techniques. However, definitive markers for SSCs, which purify SSCs (100% enrichment), are unknown. SSCs of many species can colonize the mouse testis; thus, we reasoned that same molecules of SSCs are conserved between species. In mouse, undifferentiated spermatogonia express the surface marker E-cadherin. The hypothesis tested in this work was that E-cadherin (also known as CDH1) can be expressed by undifferentiated spermatogonia of rat testes. In this paper, cross-section immunohistochemistry and whole-mount immunohistochemistry of rat seminiferous tubules were conducted to show that E-cadherin-positive cells were small in number and there are single, paired, and aligned spermatogonia attached along the basement membrane. During in vitro culture period, the undifferentiated rat spermatogonial colonies co-expressed E-cadherin and glial-derived neurotrophic factor family receptor alpha-1 or E-cadherin and promyelocytic leukemia zinc finger. Data collected during the study demonstrate that E-cadherin is expressed by a small population of rat undifferentiated spermatogonia both in vivo and during in vitro culture period.


Subject(s)
Cadherins/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism , Stem Cells/metabolism , Animals , Immunohistochemistry/methods , Male , Rats , Seminiferous Tubules/cytology , Seminiferous Tubules/metabolism , Stem Cells/cytology , Testis/cytology , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...