Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Acta amaz ; 50(1): 24-36, jan. - mar. 2020.
Article in English | LILACS | ID: biblio-1118552

ABSTRACT

The Northern Pará Drainage System encompasses the left-bank tributaries of the Amazonas River in the southern Guiana Shield region of Pará state, Brazil. Five of the region's state protected areas are considered strategic for the conservation of its biodiversity. In the present study, we assessed the ichthyofauna of the five state protected areas of the Northern Pará Drainage System. Seven expeditions were conducted between January 2008 and January 2009, which surveyed stretches of the Cuminá, Cuminapanema, Curuá, Jari, Mapuera, Nhamundá, and Paru rivers. These surveys yielded 286 species belonging to 38 families and eight orders, including seven new records of fish species for Brazil, six of which are also new records for the Amazon basin. Our results provide a valuable database for future research and conservation programs in the protected areas of the region. (AU)


Subject(s)
Amazonian Ecosystem , Protected Areas , Fishes , Biodiversity
2.
Front Genet ; 9: 271, 2018.
Article in English | MEDLINE | ID: mdl-30087693

ABSTRACT

Neotropical Rivers host a highly diverse ichthyofauna, but taxonomic uncertainty prevents appropriate conservation measures. The Doce River Basin (DRB), lying within two Brazilian threatened hotspots (Atlantic Forest and Brazilian Savanna) in south-east Brazil, faced the worst ever environmental accident reported for South American catchments, due to a dam collapse that spread toxic mining tailings along the course of its main river. Its ichthyofauna was known to comprise 71 native freshwater fish species, of which 13 endemic. Here, we build a DNA barcode library for the DRB ichthyofauna, using samples obtained before the 2015 mining disaster, in order to provide a more robust biodiversity record for this basin, as a baseline for future management actions. Throughout the whole DRB, we obtained a total of 306 barcodes, assigned to 69 putative species (with a mean of 4.54 barcodes per species), belonging to 45 genera, 18 families, and 5 orders. Average genetic distances within species, genus, and families were 2.59, 11.4, and 20.5%, respectively. The 69 species identified represent over 76% of the known DRB ichthyofauna, comprising 43 native (five endemic, of which three threatened by extinction), 13 already known introduced species, and 13 unknown species (such as Characidium sp., Neoplecostomus sp., and specimens identified only at the sub-family level Neoplecostominae, according to morphological identification provided by the museum collections). Over one fifth of all analyzed species (N = 16) had a mean intraspecific genetic divergence higher than 2%. An integrative approach, combining NND (nearest neighbor distance), BIN (barcode index number), ABGD (automatic barcode gap discovery), and bPTP (Bayesian Poisson Tree Processes model) analyses, suggested the occurrence of potential cryptic species, species complex, or historical errors in morphological identification. The evidence presented calls for a more robust, DNA-assisted cataloging of biodiversity-rich ecosystems, in order to enable effective monitoring and informed actions to preserve and restore these delicate habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...