Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Adv Sci (Weinh) ; : e2405741, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248778

ABSTRACT

Sonopiezocatalytic therapy is an emerging therapeutic strategy that utilizes ultrasound irradiation to activate piezoelectric materials, inducing polarization and energy band bending to facilitate the generation of reactive oxygen species (ROS). However, the efficient generation of ROS is hindered by the long distance of charge migration from the bulk to the material surface. Herein, atomically thin Bi2O2(OH)(NO3) (AT-BON) nanosheets are rationally engineered through disrupting the weaker hydrogen bonds within the [OH] and [NO3] layer in the bulk material. The ultrathin structure of AT-BON piezocatalytic nanosheets shortens the migration distance of carriers, expands the specific surface area, and accelerates the charge transfer efficiency, showcasing a natural advantage in ROS generation. Importantly, the non-centrosymmetric polar crystal structure grants the nanosheets the ability to separate electron-hole pairs. Under ultrasonic mechanical stress, Bi2O2(OH)(NO3) nanosheets with the remarkable piezoelectric feature exhibit the desirable in vivo antineoplastic outcomes in both breast cancer model and liver cancer model. Especially, the AT-BON-induced ROS bursts lead to the activation of the Caspase-1-driven pyroptosis pathway. This study highlights the beneficial impact of bulk material thinning on enhancing ROS generation efficiency and anti-cancer effects.

2.
Mar Pollut Bull ; 208: 117022, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39332333

ABSTRACT

Microplastics (MPs) are widespread ocean pollutants and many studies have explored their effects. However, research on MPs combined impact with copper (Cu) on dimethylated sulfur compound production is limited. Dimethyl sulfide (DMS) is an important biogenic sulfur compound related to global temperatures. This study examined the ecotoxicological effects of polyamide 6 MPs and Cu on dimethylsulfoniopropionate (DMSP), DMS, and dimethyl sulfoxide (DMSO) production in Manila clams (Ruditapes philippinarum). Our findings showed that MPs and Cu increased oxidative stress, indicated by higher superoxide anion radical production and malondialdehyde levels while decreasing glutathione contents and increasing superoxide dismutase activities. Additionally, MPs and Cu exposure reduced DMS and dissolved DMSO (DMSOd) concentrations due to decreased grazing. These results contribute to a better understanding of the ecotoxicological effects of MPs/Cu on bivalves and their roles in the organic sulfur cycle, suggesting a need for further research on long-term impacts on them.

3.
Adv Mater ; : e2409663, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308222

ABSTRACT

Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.

4.
Environ Pollut ; 360: 124653, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39095002

ABSTRACT

Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 µm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.


Subject(s)
Antioxidants , Ciliophora , Microplastics , Ciliophora/physiology , Antioxidants/metabolism , Microplastics/toxicity , Water Pollutants, Chemical , Nanoparticles/toxicity , Sulfides/toxicity
5.
Environ Pollut ; 360: 124649, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39095004

ABSTRACT

Dimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied. Herein, we investigated the impacts of polystyrene (PS) NPs/MPs (80 nm, 1 µm, and 10 µm) on zooplankton grazing, chlorophyll a (Chl a) concentration, bacterial community, dimethylsulfoniopropionate (DMSP), and DMS production in the microcosms. Our findings revealed that rotifer grazing increased the production of DMS in the absence of NPs/MPs but did not promote DMS production when exposed to NPs/MPs. The ingestion rates of the rotifer and copepod exposed to NPs/MPs at high concentrations were significantly reduced. NPs/MPs exposure significantly decreased DMS levels in the treatments with rotifers compared to the animal controls. In the bacterial microcosms, smaller NPs/MPs sizes were more detrimental to Chl a concentrations compared to larger sizes. The study revealed a stimulatory effect on Chl a concentrations, DMSPd concentrations, and bacterial abundances when exposed to 10 µm MP with low concentrations. The effects of NPs/MPs on DMS concentrations were both dose- and size-dependent, with NPs showing greater toxicity compared to larger MPs. NPs/MPs led to changes in bacterial community compositions, dependent on both dosage and size. NPs caused a notable decrease in the alpha diversities and richness of bacteria compared to MPs. These results provide insights into the influences of NPs/MPs on food webs, and subsequently organic sulfur compounds cycles.


Subject(s)
Bacteria , Water Pollutants, Chemical , Zooplankton , Animals , Zooplankton/drug effects , Bacteria/metabolism , Bacteria/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Microplastics/toxicity , Sulfur Compounds , Sulfides/toxicity , Nanoparticles/toxicity , Chlorophyll A/metabolism , Plastics
6.
Biochem Pharmacol ; 225: 116315, 2024 07.
Article in English | MEDLINE | ID: mdl-38797268

ABSTRACT

OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo. ChIP-Seq showed that 228 target genes of OC-2 were identified and they were associated with tumor growth, metastasis, angiogenesis and signal transduction; OC-2 bound to ZKSCAN3 at promoter region. Luciferase assays showed that ZKSCAN3 was identified as target gene of OC-2 and VEGFA was identified as target gene of ZKSCAN3; OC-2 promoted VEGFA expression via activating ZKSCAN3 transcriptional program. Importantly, OC-2 KD down-regulated VEGFA secretion to suppress tumor angiogenesis of HUVECs. Besides VEGFA, OC-2 was positively correlated with other angiogenic factors HIF-1α, FGF2, EGFL6 and HGF. Meanwhile, ERK1/2 and Smad1 signaling pathways might be related to function of OC-2 driving tumor aggressiveness. We revealed that OC-2 might regulate tumor growth, metastasis, angiogenesis via ERK1/2, Smad1 signaling pathways and regulate VEGFA expression for tumor angiogenesis via activating ZKSCAN3 transcriptional program, indicating that OC-2 was a convincing target to develop novel anti-tumor drugs based on angiogenesis.


Subject(s)
Down-Regulation , Mice, Nude , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Humans , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Down-Regulation/drug effects , Mice , Mice, Inbred BALB C , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Angiogenesis
7.
Environ Pollut ; 351: 124084, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697245

ABSTRACT

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.


Subject(s)
Antioxidants , Haptophyta , Reactive Oxygen Species , Sulfides , Sulfonium Compounds , Water Pollutants, Chemical , Antioxidants/metabolism , Sulfonium Compounds/metabolism , Haptophyta/growth & development , Haptophyta/metabolism , Haptophyta/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Nanoparticles/toxicity , Polystyrenes/toxicity
8.
Mar Environ Res ; 197: 106481, 2024 May.
Article in English | MEDLINE | ID: mdl-38593647

ABSTRACT

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Subject(s)
Seawater , Sulfonium Compounds , Animals , Seawater/chemistry , Sulfur/metabolism , Sulfonium Compounds/chemistry , Sulfonium Compounds/metabolism , Sulfides/metabolism , Bacteria/metabolism , Phytoplankton , China , Zooplankton/metabolism
9.
Environ Pollut ; 344: 123308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185352

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.


Subject(s)
Life History Traits , Rotifera , Sulfides , Water Pollutants, Chemical , Animals , Microplastics , Plastics/pharmacology , Polystyrenes/pharmacology , Eating , Water Pollutants, Chemical/toxicity
10.
Chem Soc Rev ; 53(3): 1167-1315, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38168612

ABSTRACT

The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.


Subject(s)
Nanomedicine , Silicon , Nanomedicine/methods , Silicon Dioxide , Drug Delivery Systems , Biocompatible Materials
11.
Adv Mater ; 36(9): e2307568, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37796929

ABSTRACT

Piezocatalytic tumor therapy is an emerging reactive oxygen species (ROS)-generating therapeutic approach that relies on piezoelectric polarization under ultrasound (US) irradiation. Optimizing ROS production is a primary objective for enhancing treatment efficiency. In this study, oxygen-vacancy-rich Pd-integrated black barium titanate (BTO) nanoparticles are rationally engineered to boost the ROS generation efficiency via the introduction of Pd. Pd-catalyzed hydrogenation at low temperatures narrows the bandgap of BTO and reduces the recombination rate of electron-hole pairs. Furthermore, Pd has dual-enzyme-mimicking characteristics, including peroxidase- and catalase-mimicking activities, which further heighten the therapeutic efficacy by enhancing ROS production and reversing the hypoxic tumor microenvironment. Importantly, the dual enzymatic activity of Pd can be amplified by multiple redox processes sparked by the piezoelectric potential under US stimulation, resulting in bilaterally enhanced multienzyme-piezoelectric synergetic therapy. In vitro and in vivo results confirm high tumor inhibition in murine breast cancer cells. This work stresses the critical effects of defect engineering-optimized piezodynamic tumor therapy.


Subject(s)
Palladium , Animals , Mice , Hydrogenation , Barium , Reactive Oxygen Species , Catalysis
12.
Chinese Journal of Biologicals ; (12): 350-355, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016964

ABSTRACT

@#Objective To prepare rabbit polyclonal antibodies against pertussis toxin(PT) and develop a double antibody sandwich ELISA for quantitative determination of PT antigen,identify and apply the method.Methods The rabbit polyclonal antibody against PT was prepared by immunizing Chinchilla rabbit with PT using traditional method.The reaction conditions of ELISA system were optimized,the double antibody sandwich ELISA method for quantitative determi-nation of PT was developed,and the specificity,linearity,accuracy,precision and sensitivity were verified.The developed method was used to detect PT antigen content in fimbriae proteins(FIM) stock solution of samples during detoxification and other purification process of pertussis antigen.Results The working condition of double antibody sandwich ELISA for detection of PT antigen content was the coating concentration of PT rabbit polyclonal antibody of 1 μg/mL,and the enzyme-labeled antibody dilution of 1:8 000.This detection system showed specific reaction with PT purified protein,but had no cross reaction with filamentous hemagglutinin,diphtheria toxoid and tetanus toxoid;the linear detection range of the developed double antibody sandwich ELISA was within 25—400 ng/mL;the recovery rates of PT at high,moderate and low concentrations were 103.27%,91.48% and 103.52%,respectively;both the intra-and inter-coefficients of variation(CVs)were less than 10%;the sensitivity of the method was 20.719 ng/mL,and the detection limit was 41.438 ng/mL.Thirty-five batches of samples were detected under five different detoxification process conditions and at different sampling time points,and the changes of antigen content were all consistent with the trend of detoxification reaction.Conclusion The PT rabbit polyclonal antibody was successfully prepared,and a double antibody sandwich ELISA with high precision and accuracy was developed for the quantitative determination of PT antigen content,which can be used for the antigen content detection of chemically detoxified samples in the production process of component DPT vaccines.

13.
Chinese Journal of Biologicals ; (12): 350-355, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013400

ABSTRACT

@#Objective To prepare rabbit polyclonal antibodies against pertussis toxin(PT) and develop a double antibody sandwich ELISA for quantitative determination of PT antigen,identify and apply the method.Methods The rabbit polyclonal antibody against PT was prepared by immunizing Chinchilla rabbit with PT using traditional method.The reaction conditions of ELISA system were optimized,the double antibody sandwich ELISA method for quantitative determi-nation of PT was developed,and the specificity,linearity,accuracy,precision and sensitivity were verified.The developed method was used to detect PT antigen content in fimbriae proteins(FIM) stock solution of samples during detoxification and other purification process of pertussis antigen.Results The working condition of double antibody sandwich ELISA for detection of PT antigen content was the coating concentration of PT rabbit polyclonal antibody of 1 μg/mL,and the enzyme-labeled antibody dilution of 1:8 000.This detection system showed specific reaction with PT purified protein,but had no cross reaction with filamentous hemagglutinin,diphtheria toxoid and tetanus toxoid;the linear detection range of the developed double antibody sandwich ELISA was within 25—400 ng/mL;the recovery rates of PT at high,moderate and low concentrations were 103.27%,91.48% and 103.52%,respectively;both the intra-and inter-coefficients of variation(CVs)were less than 10%;the sensitivity of the method was 20.719 ng/mL,and the detection limit was 41.438 ng/mL.Thirty-five batches of samples were detected under five different detoxification process conditions and at different sampling time points,and the changes of antigen content were all consistent with the trend of detoxification reaction.Conclusion The PT rabbit polyclonal antibody was successfully prepared,and a double antibody sandwich ELISA with high precision and accuracy was developed for the quantitative determination of PT antigen content,which can be used for the antigen content detection of chemically detoxified samples in the production process of component DPT vaccines

14.
Chem Soc Rev ; 52(20): 6957-7035, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37743750

ABSTRACT

Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.


Subject(s)
Nanomedicine , Nanostructures , Bromine , Chlorine , Signal Transduction
15.
Front Microbiol ; 14: 1165839, 2023.
Article in English | MEDLINE | ID: mdl-37564289

ABSTRACT

Introduction: Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods: Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results: We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion: The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.

16.
IUBMB Life ; 75(11): 957-968, 2023 11.
Article in English | MEDLINE | ID: mdl-37489553

ABSTRACT

Fibroblast growth factor 2 (FGF2) plays an important role in tumor angiogenesis. Humanized disulfide-stable double-chain antibody against fibroblast growth factor-2 (anti-FGF2 ds-Diabody) is a small molecule antibody with good tissue permeability and low immunogenicity, which has potential in tumor-targeted therapy. This study intended to investigate the effect of anti-FGF2 ds-Diabody on the migration and expression of programmed death-ligand1 (PD-L1) in hepatocellular carcinoma (HCC) cells. The anti-FGF2 ds-Diabody was expressed under methanol induction and purified with Ni2+ -affinity chromatography. Anti-FGF2 ds-Diabody significantly inhibited cell viability and proliferation in SK-Hep1 and HepG2 cells as confirmed by CCK-8 assays and colony formation assays. Western blot assays indicated that the proliferation of SK-Hep1 and HepG2 cells was inhibited by anti-FGF2 ds-Diabody through inhibiting the phosphorylation activation of AKT and MAPK. The results of transwell and western blot assays showed that the migration and invasion of SK-Hep1 and HepG2 cells were suppressed by anti-FGF2 ds-Diabody by affecting the epithelial-mesenchymal transition (EMT) process. Meanwhile, anti-FGF2 ds-Diabody inhibited the expression of PD-L1, and STAT3 participated in this process. Analysis of RT-PCR and Western blot suggested that fibroblast growth factor receptor 4 inhibitor 1 (FGFR4-IN-1) suppressed the expression of PD-L1, while STAT3 overexpression reversed this inhibitory effect. In addition, overexpression of STAT3 promoted migration and invasion and restored the suppressive effect of anti-FGF2 ds-Diabody on EMT. In conclusion, anti-FGF2 ds-Diabody could inhibit the expression of PD-L1 and EMT of hepatoma cells through FGF2/FGFR4/STAT3 axis. These results suggested that anti-FGF2 ds-Diabody has potential clinical application in inhibiting metastasis and immune escape of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disulfides/chemistry , Epithelial-Mesenchymal Transition , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , STAT3 Transcription Factor/metabolism
17.
Adv Sci (Weinh) ; 10(24): e2301279, 2023 08.
Article in English | MEDLINE | ID: mdl-37350357

ABSTRACT

Overcoming apoptosis resistance is necessary to ensure an effective cancer treatment; however, it is currently very difficult to achieve. A desirable alternative for cancer treatment is the targeted activation of pyroptosis, a unique type of programmed cell death. However, the pyroptosis inducers that are efficient for cancer therapy are limited. This work reports the engineering of 2D NiCoOx nanosheets as inducers of the production of harmful reactive oxygen species (ROS), which promote intense cell pyroptosis, and that can be applied to ultrasound (US)-augmented catalytic tumor nanotherapy. The main therapeutic task is carried out by the 2D NiCoOx nanosheets, which have four multienzyme-mimicking activities: peroxidase- (POD), oxidase- (OXD), glutathione peroxidase- (GPx), and catalase- (CAT) mimicking activities. These activities induce the reversal of the hypoxic microenvironment, endogenous glutathione depletion, and a continuous ROS output. The ROS-induced pyroptosis process is carried out via the ROS-NLRP3-GSDMD pathway, and the exogenous US activation boosts the multienzyme-mimicking activities and favors the incremental ROS generation, thus inducing mitochondrial dysfunction. The anti-cancer experimental results support the dominance of NiCoOx nanosheet-induced pyroptosis. This work expands on the biomedical applications of engineering 2D materials for US-augmented catalytic breast cancer nanotherapy and deepens the understanding of the multienzyme activities of nanomaterials.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Humans , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Neoplasms/drug therapy , Antioxidants/pharmacology , Tumor Microenvironment
18.
Adv Mater ; 35(31): e2212259, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36812400

ABSTRACT

Nanomedicine-enabled/augmented ultrasound (US) medicine is a unique area of interdisciplinary research that focuses on designing and engineering functional nanosystems to address the challenging issues in US-based biomedicine, overcoming the shortcomings of traditional microbubbles and optimizing the design of contrast and sonosensitive agents. The single-faceted summary of available US-related therapies is still a significant drawback. Here, The proposal of a comprehensive review on the recent advances of sonosensitive nanomaterials in advancing four US-related biological applications and disease theranostics is aimed. In addition to the mostly explored nanomedicine-enabled/augmented sonodynamic therapy (SDT), the summary and discussion of other sono-therapies and progresses/achievements are relatively lacking, including sonomechanical therapy (SMT), sonopiezoelectric therapy (SPT), and sonothermal therapy (STT). The design concepts of the specific sono-therapies based on nanomedicines are initially introduced. Furthermore, the representative paradigms for nanomedicine-enabled/enhanced US therapies are elaborated according to therapeutic principles and diversity. This review provides an updated and comprehensive review of the field of nanoultrasonic biomedicine, and comprehensively discusses the progress of versatile ultrasonic disease treatments. Finally, the deep discussion on the facing challenges and prospects is expected to promote the emergence and establishment of a new branch of US biomedicine through the rational combination of nanomedicine and US clinical biomedicine.


Subject(s)
Nanostructures , Neoplasms , Ultrasonic Therapy , Humans , Nanomedicine , Ultrasonography , Neoplasms/therapy , Neoplasms/drug therapy
19.
Sci Bull (Beijing) ; 68(1): 77-94, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36621435

ABSTRACT

Iron accumulation and lipid peroxidation form the basis of ferroptosis, potentially circumventing the limitations of apoptosis in cancer treatment. Owing to the lack of potent ferroptosis inducers, the development of efficient ferroptosis-based therapeutic agents and protocols against cancers is highly challenging. Inspired by the topological effect of nanoparticles in modulating cellular function/status, a specific tetrapod ferroptosis-inducer iron-palladium (FePd) nanocrystal was rationally engineered for physically activated autophagy-augmented ferroptosis and enhanced cancer immunotherapy. Specifically, the tetrapod FePd nanocrystal featured strong peroxidase-/glutathione oxidase-mimicking bioactivities, which promoted cancer cell ferroptosis. The special spiky morphology and nanostructure of the FePd nanocrystal simultaneously induced autophagy, which augmented ferroptosis in cancer cells and triggered the release of inflammatory cytokines in macrophages for strengthening anti-PD-L1-antibody mediated immunotherapy, synergistically achieving the maximal antineoplastic effect in three tumor-bearing animal models. This unique physical activation strategy for efficient cancer treatment via precise morphological tuning represents a paradigm for nanomedicine design for efficient tumor treatment.


Subject(s)
Ferroptosis , Neoplasms , Animals , Nanomedicine , Neoplasms/drug therapy , Iron/pharmacology , Immunotherapy , Autophagy
20.
Biomaterials ; 293: 121988, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36580716

ABSTRACT

As the clinical efficacy of immunotherapy for triple-negative breast cancer (TNBC) remains limited, exploring new immunotherapy approaches is still indispensable. Mn2+ has been proven as a cGAS-STING agonist to remarkably enhance antitumor immunity. Here, we report a combined tumor-therapeutic strategy based on Prussian blue (PB)-mediated photothermal therapy with Mn2+-augmented immunotherapy by synergistically activating the cGAS-STING pathway. Mn-enriched photonic nanomedicine (MnPB-MnOx) were constructed by integrating MnOx onto the surface of Mn-doped PB nanoparticles. All components of MnPB-MnOx are biocompatible and biodegradable, wherein sufficient Mn are endowed through rational nanostructure design, conferring easier cGAS-STING activation. Additionally, tumor hyperthermia strengthened by MnPB under near-infrared light radiation, synergistic with the generation of reactive oxygen species catalyzed by MnOx, double hits cancer cells to release abundant tumor-associated antigens for further promoting immune response stimulation. The local anti-TNBC efficacy of photothermal/immuno-therapy has been proven effective in subcutaneous 4T1-bearing mice. Especially, it has been systematically demonstrated in bilateral orthotopic 4T1-bearing mice that the as-proposed treatment could successfully activate innate and adaptive immunity, and local therapy could engender systemic responses to suppress the distant tumors. Collectively, this work represents a proof-of-concept for a non-invasive Mn-based tumor-immunotherapeutic modality, providing a paradigm for the immunotherapy of metastatic-prone tumors.


Subject(s)
Hyperthermia, Induced , Neoplasms , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Catalysis , Immunotherapy , Manganese , Nanomedicine , Neoplasms/therapy , Nucleotidyltransferases/metabolism , Triple Negative Breast Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL