Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.180
Filter
1.
Blood ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958479

ABSTRACT

This study aimed to compare the efficacy and safety of eltrombopag plus diacerein vs. eltrombopag alone in patients with primary immune thrombocytopenia (ITP) who were previously unresponsive to 14 days of eltrombopag treatment at the full dose. Recruited patients were randomly assigned 1:1 to receive either eltrombopag plus diacerein (n=50) or eltrombopag monotherapy (n=52). Overall response rate, defined as a platelet count at or above 30×109/L, at least doubling of the baseline platelet count, and no bleeding, was reached in 44% of patients in the eltrombopag plus diacerein group compared with 13% in the eltrombopag group at day 15 (P = .0009), and reached in 42% of patients in the combination group compared with 12% in the monotherapy group at day 28 (P = .0006). The addition of diacerein to eltrombopag also led to a longer duration of response (P = .0004). The two most common treatment-emergent adverse events were respiratory infection and gastrointestinal reactions in the combination group, and fatigue and respiratory infection in the eltrombopag group. In conclusion, eltrombopag plus diacerein was well tolerated, and induced higher overall response rates and longer duration of response than eltrombopag alone, offering a rejuvenating salvage therapy for ITP patients unresponsive to 14 days of full dosage eltrombopag. Our work has the potential to enhance the care of patients treated with thrombopoietin receptor agonists, reducing the need for rapid transitions to less-preferable therapies. This study is registered at ClinicalTrials.gov as NCT04917679.

4.
Front Med (Lausanne) ; 11: 1362108, 2024.
Article in English | MEDLINE | ID: mdl-38966527

ABSTRACT

Background: Central retinal vein occlusion (CRVO) is a rare adverse effect related to the use of tyrosine kinase inhibitors (TKIs) in patients with metastatic malignancies, which has only been reported in several case reports. Case presentation: We reported the case series of three CRVO patients on regular regimens of TKIs as part of targeted therapies for metastatic malignancies, all of whom were otherwise healthy with no or well-controlled systemic conditions. All these patients received injections of intravitreal dexamethasone implant (IDI) and achieved a fluid-free macula at the end of the visit. In addition, we reviewed the existing literature on this subject and present here an updated analysis of the related TKIs, ocular presentation, treatment, and prognosis. Conclusion: All patients diagnosed with CRVO on TKIs received dexamethasone implant treatment and obtained a fluid-free macula. We would like to raise awareness among our colleague oncologists about the possibility of CRVO related to TKI use and the necessity for patients to be screened regularly by a retinal specialist.

5.
Chem Biol Interact ; 399: 111132, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964637

ABSTRACT

The clinical application of doxorubicin (DOX) was limited by the serious cardiotoxicity. The traditional Chinese medicine Andrographis paniculata and its principal active component (Dehydroandrographolide, DA) have been well known for their diverse cardiovascular protective effects. However, the effects of DA on DOX-induced cardiotoxicity (DIC) were still unknown. In this study, we evaluated the effects and revealed the potential mechanisms of DA on DIC both in vivo and in vitro. The effects of DA on DIC were systematically assessed by echocardiography and histological assays. Western blot and flow cytometry were used to measure apoptosis of cardiomyocytes. Transmission electron microscopy and StubRFP-SensGFP-LC3 lentivirus were further used to assay autophagic flux. Our results showed that DA administration significantly improved cardiac function and attenuated DOX-induced cardiomyocyte apoptosis. Mechanically, DA restored autophagic flux and lysosome functions via inhibiting DOX-induced mTOR signal pathway activation and increasing the translocation of TFEB to the nucleus. However, activation of mTOR or knockdown of TFEB significantly inhibited the protective effects of DA against DIC by impacting lysosomal functions and autophagic flux. In conclusion, our results revealed that DA might be a potential cardioprotective agent against DIC.

6.
Phys Chem Chem Phys ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015023

ABSTRACT

γ-Butyrobetaine hydroxylase (BBOX) is a non-heme FeII/2OG dependent enzyme that is able to perform two different kinds of catalytic reactions on 3-(2,2,2-trimethylhydrazinium) propionate (THP) to produce distinct catalytic products. Although the structure of BBOX complexed with THP has been resolved, the details of its catalytic mechanism are still elusive. In this study, by employing molecular dynamics (MD) simulations and density functional theory (DFT) calculations, the mechanism of the THP oxidative rearrangement reactions catalysed by BBOX was investigated. Our calculations revealed how the enzyme undergoes a conformational conversion to initiate the catalytic reactions. In the first catalytic step, BBOX performs hydrogen abstraction from the substrate THP as a common non-heme iron enzyme. Due to the structure of the substrate stabilizing the radical species and polarizing the adjacent N-N bond, in the next step, THP takes the pathway for N-N bond homolysis but not regular hydroxyl rebounding. The cleaved ammonium radical could either react with the hydroxyl group on the iron centre of the enzyme or recombine with the other cleaved fragment of the substrate to generate the rearranged product. This study revealed the catalytic mechanism of BBOX, detailing how the enzyme and the substrate regulated the hydroxyl rebound process to generate various products.

7.
Cancer Control ; 31: 10732748241266476, 2024.
Article in English | MEDLINE | ID: mdl-39030537

ABSTRACT

OBJECTIVES: Brain metastases (BMs) are commonly categorized into cystic and solid. However, the difference in the prognosis of patients with either cystic or solid BMs following radiotherapy remains poorly understood. We used a retrospective design to elucidate the disparities in survival between these two patient groups undergoing radiotherapy and to identify factors influencing the overall survival (OS) of patients with BMs. METHODS: This retrospective study encompasses 212 patients diagnosed with BMs. We meticulously analyzed the clinical characteristics, radiation therapy modalities, and risk factors influencing the OS among these patients, categorized by BMs type, post-brain radiation therapy. RESULTS: A statistically significant difference in mOS was observed between the two cohorts (Solid vs Cystic: 23.1 vs 14.6 months). Subgroup analysis unveiled distinctions in mOS, particularly in patients with EGFR-mutant lung adenocarcinoma (Solid vs Cystic: 23.1 vs 6.43 months). The volume of BMs and the biological effective dose (BED) emerged as significantly prognostic factors for patients with cystic BMs. For patients with solid BMs, fraction dose, BED, and the number of BMs were identified as independent prognostic factors for survival. CONCLUSION: Brain radiotherapy shows superior survival benefits for lung cancer patients with solid BMs compared to those with cystic BMs, particularly in EGFR-mutant lung cancer. In particular, patients receiving BED ≥60 Gy have a more favorable prognosis than those receiving BED <60 Gy, regardless of the type of BM (solid or cystic) in lung cancer.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/mortality , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Aged , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Adult
8.
BMC Ophthalmol ; 24(1): 305, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044126

ABSTRACT

BACKGROUND: Addressing presbyopia in the aging population, particularly in non-cataractous patients, remains a challenge. This study evaluates the outcomes of refractive lens exchange (RLE) with AT LISA tri 839MP trifocal intraocular lens (IOL) implantation in a Chinese presbyopic population without cataracts. METHODS: The study included 164 eyes from 82 patients undergoing bilateral RLE at Peking Union Medical College Hospital. Comprehensive evaluations encompassed visual acuities, refraction, ocular aberrometry, and subjective outcomes via the VF-14 questionnaire. The focus was on postoperative visual performance, refractive outcomes, safety, objective optical quality, and patient satisfaction. RESULTS: 100%, 90.2%, and 89.0% of patients achieved binocular UDVA, UNVA, and UIVA of logMAR 0.1 or better at 6 months postoperatively. 97.6% of eyes were within ± 1.00 D of emmetropia postoperatively. Optical quality assessments showed increases in modulation transfer function and Strehl ratios (p < 0.05). High-order aberrations decreased significantly (p < 0.05). Despite the high incidence of posterior capsule opacification (83.2%), managed with early Nd: YAG capsulotomy, no other severe complications were reported. Patient-reported outcomes indicated high satisfaction, with an average VF-14 score of 94.3 ± 10.2 and 93.5% achieving complete spectacle independence. Halo (66.2%) was the most commonly reported optical phenomena, followed by glare (18.2%), and starburst (7.8%) after surgery. CONCLUSIONS: Bilateral RLE with trifocal IOLs in presbyopic patients without cataracts significantly improves visual acuity and reduces ocular aberrations in presbyopic patients. The procedure offers high patient satisfaction and spectacle independence, though it requires careful patient selection and management of expectations regarding potential photic phenomena.


Subject(s)
Lens Implantation, Intraocular , Multifocal Intraocular Lenses , Patient Satisfaction , Presbyopia , Aged , Female , Humans , Male , Middle Aged , China/epidemiology , East Asian People , Lens Implantation, Intraocular/methods , Presbyopia/surgery , Presbyopia/physiopathology , Refraction, Ocular , Surveys and Questionnaires , Vision, Binocular , Visual Acuity
9.
Front Neurosci ; 18: 1423389, 2024.
Article in English | MEDLINE | ID: mdl-39035776

ABSTRACT

Objective: Patients with temporal lobe epilepsy (TLE) often exhibit neurocognitive disorders; however, we still know very little about the pathogenesis of cognitive impairment in patients with TLE. Therefore, our aim is to detect changes in the structural connectivity networks (SCN) of patients with TLE. Methods: Thirty-five patients with TLE were compared with 47 normal controls (NC) matched according to age, gender, handedness, and education level. All subjects underwent thin-slice T1WI scanning of the brain using a 3.0 T MRI. Then, a large-scale structural covariance network was constructed based on the gray matter volume extracted from the structural MRI. Graph theory was then used to determine the topological changes in the structural covariance network of TLE patients. Results: Although small-world networks were retained, the structural covariance network of TLE patients exhibited topological irregularities in regular architecture as evidenced by an increase in the small world properties (p < 0.001), normalized clustering coefficient (p < 0.001), and a decrease in the transfer coefficient (p < 0.001) compared with the NC group. Locally, TLE patients showed a decrease in nodal betweenness and degree in the left lingual gyrus, right middle occipital gyrus and right thalamus compared with the NC group (p < 0.05, uncorrected). The degree of structural networks in both TLE (Temporal Lobe Epilepsy) and control groups was distributed exponentially in truncated power law. In addition, the stability of random faults in the structural covariance network of TLE patients was stronger (p = 0.01), but its fault tolerance was lower (p = 0.03). Conclusion: The objective of this study is to investigate the potential neurobiological mechanisms associated with temporal lobe epilepsy through graph theoretical analysis, and to examine the topological characteristics and robustness of gray matter structural networks at the network level.

10.
Light Sci Appl ; 13(1): 166, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009583

ABSTRACT

3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.

11.
Org Lett ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018122

ABSTRACT

Friedel-Crafts acylation is usually promoted by Lewis acids or Brønsted acids. In this work, a novel acylation of arenes with a highly electrophilic acylphosphonium salt was developed. The alkylation of the phosphorus atom in acylphosphines generated a neutral trivalent phosphine as a good leaving group and triggered the high electrophilicity of the acylphosphonium salt. Using acylphosphonium salts, 38 examples of acylations of arenes, alcohols, phenol, amines, thioalcohols, and even polystyrene were achieved. The acylation of arenes was monitored by 31P nuclear magnetic resonance and disclosed the existence of an acylphosphonium intermediate. The electrophilic capability of the acylphosphonium salt was ranked by the following series of controlled reactions: AcPR+ ≈ AcOTf > AcI > AcCl.

12.
Quant Imaging Med Surg ; 14(7): 4779-4791, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022247

ABSTRACT

Background: The evaluation of brain tumor recurrence after surgery is based on the comparison between tumor regions on pre-operative and follow-up magnetic resonance imaging (MRI) scans in clinical practice. Accurate alignment of MRI scans is important in this evaluation process. However, existing methods often fail to yield accurate alignment due to substantial appearance and shape changes of tumor regions. The study aimed to improve this misalignment situation through multimodal information and compensation for shape changes. Methods: In this work, a deep learning-based deformation registration method using bilateral pyramid to create multi-scale image features was developed. Moreover, morphology operations were employed to build correspondence between the surgical resection on the follow-up and pre-operative MRI scans. Results: Compared with baseline methods, the proposed method achieved the lowest mean absolute error of 1.82 mm on the public BraTS-Reg 2022 dataset. Conclusions: The results suggest that the proposed method is potentially useful for evaluating tumor recurrence after surgery. We effectively verified its ability to extract and integrate the information of the second modality, and also revealed the micro representation of tumor recurrence. This study can assist doctors in registering multiple sequence images of patients, observing lesions and surrounding areas, analyzing and processing them, and guiding doctors in their treatment plans.

13.
Anal Chim Acta ; 1317: 342916, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030013

ABSTRACT

BACKGROUND: Protein misfolding and aggregation can lead to various diseases. Recent studies have shed light on the aggregated protein in breast cancer pathology, which suggests that it is crucial to design chemical sensors that visualize protein aggregates in breast cancer, especially in clinical patient-derived samples. However, most reported sensors are constrained in cultured cell lines. RESULTS: In this work, we present the development of two isophorone-based crystallization-induced-emission fluorophores for detecting proteome aggregation in breast cancer cell line and tissues biopsied from diseased patients, designated as A1 and A2. These probes exhibited viscosity sensitivity and recovered their fluorescence strongly at crystalline state. Moreover, A1 and A2 exhibit selective binding capacity and strong fluorescence for various aggregated proteins. Utilizing these probes, we detect protein aggregation in stressed breast cancer cells, xenograft mouse model of human breast cancer and clinical patient-derived samples. Notably, the fluorescence intensity of both probes light up in tumor tissues. SIGNIFICANCE: The synthesized isophorone-based crystallization-induced-emission fluorophores, A1 and A2, enable sensitive detection of protein aggregation in breast cancer cells and tissues. In the future, aggregated proteins are expected to become indicators for early diagnosis and clinical disease monitoring of breast cancer.


Subject(s)
Breast Neoplasms , Crystallization , Fluorescent Dyes , Proteome , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Animals , Female , Fluorescent Dyes/chemistry , Proteome/analysis , Proteome/chemistry , Mice , Protein Aggregates , Cell Line, Tumor , Mice, Nude
14.
Acta Pharmacol Sin ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886550

ABSTRACT

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

15.
Cell Rep ; 43(7): 114377, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889005

ABSTRACT

Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.

16.
CNS Neurosci Ther ; 30(6): e14808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887205

ABSTRACT

OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.


Subject(s)
Neurons , Phenylethanolamine N-Methyltransferase , Solitary Nucleus , Animals , Phenylethanolamine N-Methyltransferase/metabolism , Phenylethanolamine N-Methyltransferase/genetics , Solitary Nucleus/enzymology , Solitary Nucleus/metabolism , Solitary Nucleus/cytology , Neurons/metabolism , Neurons/enzymology , Male , Efferent Pathways/enzymology , Afferent Pathways/enzymology , Rats, Sprague-Dawley , Brain Mapping/methods , Rats
17.
Exploration (Beijing) ; 4(3): 20230067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939858

ABSTRACT

Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an "ion cocktail therapy" is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas. Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.

18.
ACS Nano ; 18(26): 17267-17281, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38871478

ABSTRACT

Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.


Subject(s)
Antineoplastic Agents , Apoptosis , B7-H1 Antigen , Down-Regulation , Ferroptosis , Nanoparticles , Ferroptosis/drug effects , Animals , Humans , Mice , Nanoparticles/chemistry , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Down-Regulation/drug effects , Reactive Oxygen Species/metabolism , Lipids/chemistry , Cell Proliferation/drug effects , Female , Drug Screening Assays, Antitumor , Cell Line, Tumor , Liposomes
19.
Life Sci ; 351: 122853, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889841

ABSTRACT

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Subject(s)
Acid Sensing Ion Channels , Blood Pressure , Carbon Dioxide , Hypertension , Neurons , Rats, Inbred SHR , Rats, Inbred WKY , Solitary Nucleus , Animals , Acid Sensing Ion Channels/metabolism , Solitary Nucleus/metabolism , Rats , Neurons/metabolism , Neurons/drug effects , Male , Carbon Dioxide/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Blood Pressure/drug effects , Respiration/drug effects , Peptides , Spider Venoms
20.
Microorganisms ; 12(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38930530

ABSTRACT

Accurate diagnostic techniques and effective therapeutic methods are required to treat H. pylori. The application of chicken single-chain variable fragment (scFv) antibodies may diagnose and treat H. pylori. This study used the phage display technique to construct a chicken-derived immune scFv antibody library against H. pylori. Total RNA was extracted from the spleens of five immunized chickens and reverse transcribed into cDNA. A fragment of scFv was produced by overlap extension PCR and cloned into a pHEN2 phagemid vector. After the package with the M13KO7 helper phage, the recombinant HpaA protein was used as a target antigen to validate the screening ability of our antibody library by bio-panning. The dilution counting results showed that the size of the primary antibody library was estimated to be 1 × 109 cfu/mL. PCR analysis of 47 clones from the library revealed that about 100% of the clones were positive with scFv fragments, and there were no identical sequences, indicating the good diversity of the antibody library. After three rounds of bio-panning, high-affinity antibodies against recombinant HpaA protein were successfully obtained. The selected antibody specifically recognized HpaA protein in nine different H. pylori strains, confirming the screening ability of our library. The chicken immune scFv antibody library against H. pylori was successfully constructed, and the antibody library's screening ability was validated by selecting specific scFv antibodies against recombinant HpaA and clinical strains. It provided a simple and rapid method to obtain antibodies against H. pylori for diagnosis or treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...