Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 78(8): 2916-2925, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34047833

ABSTRACT

Botryosphaeria dothidea is one of the most important diseases which can cause poplar canker. In our previous study, the endophytic Bacillus subtilis N6-34 screened from poplar tissue was found to be an antagonistic strain against B. dothidea. In order to ascertain the colonization rule of B. subtilis N6-34 in poplar plants, colonization of B. subtilis N6-34 labeled with a green fluorescent protein (GFP) was investigated in poplar plants and the rhizosphere soil. To confirm the inhibitory effect of the strain N6-34 on pathogenic fungi, real-time fluorescent quantitative PCR experiment with Fusarium oxysporum as the target strain was carried out. Firstly, a plasmid (pHT01-P43GFPmut3a) containing gfp gene was successfully transformed into wild B. subtilis N6-34, which has the similar characteristics with the strain N6-34 in cell growth and antifungal activity. The poplar pot experiments were carried out to examine the colonization rules and colonization quantity in poplar plants and rhizosphere soil. Observation with a confocal laser scanning microscope showed that GFP-labeled B. subtilis N6-34 (N6-34-GFP) could colonize in primary root, lateral root and adventitious root. With the extension of inoculation time, the colonization quantity of N6-34-GFP in the rhizosphere soil and poplar plants showed a trend of first increasing, then stabilizing for a period of time and then decreasing. The real-time fluorescent quantitative PCR result showed a gradual decrease in the number of F. oxysporum with increasing inoculation time. Therefore, N6-34-GFP exhibited colonization in the rhizosphere soil and different parts of poplar plants. In addition, the strain N6-34 could inhibit the growth of pathogenic fungi. The ability of B. subtilis N6-34 to colonize in the rhizosphere soil and poplar plants and to inhibit fungal growth in vitro suggest a potential application of this strain as a biological control agent.


Subject(s)
Mycoses , Plant Diseases , Ascomycota , Fusarium , Plant Diseases/prevention & control , Plant Roots , Polymerase Chain Reaction , Soil Microbiology
2.
Biomed Res Int ; 2015: 972481, 2015.
Article in English | MEDLINE | ID: mdl-25685820

ABSTRACT

Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.


Subject(s)
Biodiversity , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Mycorrhizae/genetics , Rhizome/microbiology , Soil Microbiology , Ziziphus/microbiology , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...