Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 125: 307-360, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30528997

ABSTRACT

Poly (lactic acid) or polylactide (PLA) is a commercial biobased, biodegradable, biocompatible, compostable and non-toxic polymer that has competitive material and processing costs and desirable mechanical properties. Thereby, it can be considered favorably for biomedical applications and as the most promising substitute for petroleum-based polymers in a wide range of commodity and engineering applications. However, PLA has some significant shortcomings such as low melt strength, slow crystallization rate, poor processability, high brittleness, low toughness, and low service temperature, which limit its applications. To overcome these limitations, blending PLA with other polymers is an inexpensive approach that could also tailor the final properties of PLA-based products. During the last two decades, researchers investigated the synthesis, processing, properties, and development of various PLA-based blend systems including miscible blends of poly l-lactide (PLLA) and poly d-lactide (PDLA), which generate stereocomplex crystals, binary immiscible/miscible blends of PLA with other thermoplastics, multifunctional ternary blends using a third polymer or fillers such as nanoparticles, as well as PLA-based blend foam systems. This article reviews all these investigations and compares the syntheses/processing-morphology-properties interrelationships in PLA-based blends developed so far for various applications.


Subject(s)
Polyesters/chemistry , Biocompatible Materials/chemistry , Biopolymers/chemistry , Chemical Phenomena , Crystallization , Mechanical Phenomena , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Polyesters/chemical synthesis , Polymerization , Stereoisomerism
2.
J Sep Sci ; 38(15): 2729-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25980364

ABSTRACT

Immunoaffinity adsorbent for transferrin (Tf) purification was prepared by immobilizing anti-transferrin (Anti-Tf) antibody on magnetic monosizepoly(glycidyl methacrylate) beads, which were synthesized by dispersion polymerization technique in the presence of Fe3 O4 nanopowder and obtained with an average size of 2.0 µm. The magnetic poly(glycidyl methacrylate) (mPGMA) beads were characterized by Fourier transform infrared spectroscopy, swelling tests, scanning electron microscopy, electron spin resonance spectroscopy, thermogravimetric analysis and zeta sizing analysis. The density and swelling ratio of the beads were 1.08 g/cm(3) and 52%, respectively. Anti-Tf molecules were covalently coupled through epoxy groups of mPGMA. Optimum binding of anti-Tf was 2.0 mg/g. Optimum Tf binding from aqueous Tf solutions was determined as 1.65 mg/g at pH 6.0 and initial Tf concentration of 1.0 mg/mL. There was no remarkable loss in the Tf adsorption capacity of immunoaffinity beads after five adsorption-desorption cycles. Tf adsorption from artificial plasma was also investigated and the purity of the Tf molecules was shown with gel electrophoresis studies.


Subject(s)
Immunomagnetic Separation , Transferrin/isolation & purification , Chromatography, Affinity/methods , Electron Spin Resonance Spectroscopy , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...