Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652591

ABSTRACT

The accumulation of manganese ions is crucial for scavenging reactive oxygen species and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains - a DNA-binding domain, a dimerisation domain, and an ancillary domain - the mechanisms underlying both, metal ion activation and DNA recognition remain elusive. In this study, we present biophysical analyses and the structure of the dimerisation and DNA-binding domains of DR2539 in its holo-form and in complex with the 21 base pair pseudo-palindromic repeat of the dr1709 promoter region, shedding light on these activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix α3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small-angle X-ray scattering experiments and supported by AlphaFold modeling provides a model illustrating the conformational changes induced upon metal binding.

2.
Chembiochem ; 25(12): e202400235, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38642076

ABSTRACT

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Phenylalanine , Humans , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Phenylalanine/chemistry , Phenylalanine/metabolism , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/chemical synthesis , Molecular Docking Simulation , Crystallography, X-Ray , Molecular Dynamics Simulation , Catalytic Domain , Molecular Structure
3.
Nat Commun ; 14(1): 8248, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086790

ABSTRACT

The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid ß-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-ß (Aß) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aß toxicity, a hallmark of AD.


Subject(s)
Alzheimer Disease , Electron Transport Complex I , Humans , Oxidation-Reduction , Electron Transport Complex I/metabolism , Energy Metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism
4.
Angew Chem Int Ed Engl ; 60(9): 4689-4697, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33320993

ABSTRACT

Fatty acid ß-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear. Here we show that ECSIT functions as the bridging node of the MCIA core complex. Furthermore, cryo-electron microscopy together with biochemical and biophysical experiments reveal that the C-terminal domain of ECSIT directly binds to the vestigial dehydrogenase domain of the FAO enzyme ACAD9 and induces its deflavination, switching ACAD9 from its role in FAO to an MCIA factor. These findings provide the structural basis for the MCIA complex architecture and suggest a unique molecular mechanism for coordinating the regulation of the FAO and OXPHOS pathways to ensure an efficient energy production.


Subject(s)
Electron Transport Complex I/chemistry , Flavin-Adenine Dinucleotide/metabolism , Mitochondria/metabolism , Acyl-CoA Dehydrogenases/genetics , Acyl-CoA Dehydrogenases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/metabolism , Energy Metabolism , Flavin-Adenine Dinucleotide/chemistry , Humans , Oxidative Phosphorylation , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...