Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 210: 113676, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37059287

ABSTRACT

Anthocyanins are a subclass of flavonoids that are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Multidrug and toxic compound extrusion transporters (MATE) is a family of membrane transporters that transport ions and secondary metabolites, such as anthocyanins, in plants. Although various studies on MATE transporters have been carried out on different plant species, this is the first comprehensive report to mine the Daucus carota genome to identify the MATE gene family. Our study identified 45 DcMATEs through genome-wide analysis and detected five segmental and six tandem duplications from the genome. The chromosome distribution, phylogenetic analysis, and cis-regulatory elements revealed the structural diversity and numerous functions associated with the DcMATEs. In addition, we analyzed RNA-seq data obtained from the European Nucleotide Archive to screen for the expression of DcMATEs involved in anthocyanin biosynthesis. Among the identified DcMATEs, DcMATE21 correlated with anthocyanin content in the different D. carota varieties. In addition, the expression of DcMATE21 and anthocyanin biosynthesis genes was correlated under abscisic acid, methyl jasmonate, sodium nitroprusside, salicylic acid, and phenylalanine treatments, which were substantiated by anthocyanin accumulation in the in vitro cultures. Further molecular membrane dynamics of DcMATE21 with anthocyanin (cyanidin-3-glucoside) identified the binding pocket, showing extensive H-bond interactions with 10 crucial amino acids present in the transmembrane helix of 7, 8, and 10 of DcMATE21. The current investigation, using RNA-seq, in vitro cultures, and molecular dynamics studies revealed the involvement of DcMATE21 in anthocyanin accumulation in vitro cultures of D. carota.


Subject(s)
Anthocyanins , Daucus carota , Daucus carota/metabolism , Phylogeny , Molecular Dynamics Simulation , Plant Proteins/metabolism , Plants/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Gene Expression Regulation, Plant
2.
ACS Omega ; 6(38): 24502-24514, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604632

ABSTRACT

Anthocyanins biosynthesis is a well-studied biosynthesis pathway in Daucus carota. However, the scale-up production at the bioreactor level and transporter involved in accumulation is poorly understood. To increase anthocyanin content and elucidate the molecular mechanism involved in accumulation, we examined D. carota cell culture in flask and bioreactor for 18 days under salt stress (20.0 mM NH4NO3/37.6 mM KNO3) at 3 day intervals. The expression of anthocyanin biosynthesis and putative MATE (multidrug and toxic compound extrusion) transporter expression was analyzed by qRT-PCR. It was observed that there was a significant enhancement of anthocyanin in the bioreactor compared to the control culture. A correlation was observed between the expression of MATE and the anthocyanin biosynthesis genes (CHS, C4H, LDOX, and UFGT) on the 9th day in a bioreactor, where maximum anthocyanin accumulation and expression was detected. We hypothesize the involvement of MATE in transporting anthocyanin to tonoplast in D. carota culture under salt stress.

3.
J Agric Food Chem ; 69(6): 1888-1899, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33529027

ABSTRACT

Serotonin and melatonin are important signaling and stress mitigating molecules. However, their role and molecular mechanism in the accumulation of isoflavones are not clearly defined. To elucidate their functions, serotonin and melatonin were applied to in vitro cultures of soybean at different concentrations and analyzed to assess the accumulation of isoflavone content followed by transcript levels of biosynthesis genes at different time intervals. Increased total phenolics, total flavonoids, and different forms of isoflavone content were observed in the treatments. Expression levels of critical genes in isoflavone, ethylene, jasmonic acid, abscisic acid, and melatonin biosynthesis and related transcription factor were quantified. A correlation was observed between the expression of ethylene biosynthesis genes (S-adenosylmethionine synthase and 1-aminocyclopropane-1-carboxylate oxidase) and isoflavone biosynthesis genes (chalcone synthase, chalcone reductase, and isoflavone synthase). We hypothesize that, under serotonin and melatonin treatments, ethylene biosynthesis may play a role in the increase/decrease in isoflavone content in soybean culture.


Subject(s)
Isoflavones , Melatonin , Ethylenes , Serotonin , Glycine max/genetics
4.
3 Biotech ; 8(10): 431, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30306000

ABSTRACT

Anthocyanins are major water-soluble and dynamic colouring plant pigment present in plant tissues with the high antioxidant properties. The role of ammonium and potassium nitrate in the culture medium on anthocyanin augmentation is probed thoroughly, but the mechanism of its biosynthesis continues to be unclear. Hence, the present study was undertaken to optimise nitrate ratio in the culture medium for anthocyanin augmentation and examination of its biosynthesis pathway in callus culture of Daucus carota. MS basal medium fortified with various ratio of NH4NO3:KNO3 was employed to find their impact on biomass, anthocyanin augmentation and the expression profile of anthocyanin biosynthesis genes in the callus culture. The data indicated that the highest anthocyanin content (9.30 ± 0.25 mg/100 g FW) was seen in callus grown on the medium supplemented with 20.0 mM NH4NO3:37.6 mM KNO3 and the least was seen in the medium which contained 40.0 mM NH4NO3:18.8 mM KNO3 (2.74 ± 0.27 mg/100 g FW). This indicates an optimal concentration of NH4NO3:KNO3 ratio is essential to produce a higher amount of anthocyanin in in vitro culture. Meanwhile, anthocyanin biosynthesis genes were differentially expressed as confirmed by qRT-PCR in the time interval of 5, 10, 15, 20 and 25 days. The transcript levels of nine anthocyanin biosynthesis genes were increased in the response of varying NH4NO3:KNO3 ratio in the medium. The transcript level of early genes PAL, 4CL, CHS and CHI increased by 19.5, 21.0, 16.2 and 9.98-fold, respectively, compared with control. In addition, late biosynthesis genes LDOX and UFGT resulted in the transcript level of 11.3 and 13.6-fold, respectively.

5.
3 Biotech ; 8(3): 134, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29479510

ABSTRACT

In the present study, an effort has been made to optimize various culture conditions for enhanced production of anthocyanin. Nutrient content of MS medium (ammonium to potassium nitrate ratio and phosphate concentration) had a profound influence on the cell biomass and anthocyanin accumulation in cell suspension cultures of Daucus carota. Suspension cultures were carried out in shake flasks for 18 days and examined for cell growth, anthocyanin synthesis, anthocyanin yield and development of pigmented cells in relation to the uptake of total sugar, extracellular phosphate, nitrate and ammonia. The addition of NH4NO3 to KNO3 ratio (20.0 mM: 37.6 mM) in the suspension culture media resulted in a 2.85-fold increase in anthocyanin content at day 3. Similarly, a lower concentration of KH2PO4 (0.45 mM) in the MS medium resulted in 1.63-fold increase in anthocyanin content at day 9. The total sugar uptake was closely associated with a significant increase in anthocyanin accumulation. Total sugar and nitrate were consumed until 9-12 days, while ammonia and phosphate were completely consumed within 3 days after inoculation. After 9 days, cell lysis was observed and resulted in the leakage of intracellular substances. These observations suggest that anthocyanin was synthesized only by viable pigmented cells and degraded rapidly after cell death and lysis. This study signifies the utility of D. carota suspension culture for further up-scaling studies of anthocyanin.

SELECTION OF CITATIONS
SEARCH DETAIL
...