Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 31(10): 2762-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24792828

ABSTRACT

PURPOSE: To demonstrate the efficacy of infrared (IR) spectroscopic imaging for evaluation of lateral diffusion in stratum corneum (SC) and for elucidation of intermolecular interactions between exogenous agents and SC constituents. METHODS: In separate experiments, acyl chain perdeuterated oleic acid (OA-d) and deuterated dimethyl sulfoxide (DMSO-d) were applied to the surface of isolated human SC. The lateral distribution of permeant concentrations was monitored using the time-dependence of IR images. Diffusion coefficients (D) were estimated from Fick's second law. Interactions between the exogenous agents and the SC were tracked from changes in CD2 and Amide I stretching frequencies. RESULTS: Networked glyphs served as the major pathway for lateral distribution of OA-d. In glyph-poor regions, D values from 0.3-1 × 10(-8) cm(2)/s bracketed the OA-d data and apparently decreased with time. Although diffusion of DMSO-d is relatively fast compared to our experimental measurement time, the results suggest values of ~10(-7) cm(2)/s. OA-d spectral changes suggest penetration into the ordered lipids of the SC; DMSO-d penetration results in perturbation of SC keratin structure. CONCLUSIONS: IR imaging provides concentration profiles, diffusion coefficients, and unique molecular level information about structural changes in the endogenous SC constituents and exogenous agents upon their mutual interaction. Transport along glyphs is the dominant mode of distribution for OA-d.


Subject(s)
Epidermis/drug effects , Epidermis/metabolism , Skin Absorption , Spectrophotometry, Infrared , Biological Transport , Deuterium , Diffusion , Dimethyl Sulfoxide/pharmacokinetics , Humans , In Vitro Techniques , Oleic Acid/pharmacokinetics , Tissue Distribution
2.
Exp Dermatol ; 23(1): 39-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24372651

ABSTRACT

Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions.


Subject(s)
Epidermis/drug effects , Epidermis/metabolism , Lipid Metabolism/drug effects , Plant Oils/pharmacology , Adult , Body Water/drug effects , Body Water/metabolism , Dermatologic Agents/chemistry , Dermatologic Agents/pharmacokinetics , Dermatologic Agents/pharmacology , Female , Humans , In Vitro Techniques , Microspectrophotometry , Oleic Acid/pharmacokinetics , Oleic Acid/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacokinetics , Skin Absorption/drug effects , Skin Absorption/physiology , Triolein/pharmacokinetics , Triolein/pharmacology , Young Adult
3.
J Am Chem Soc ; 134(13): 5850-6, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22385480

ABSTRACT

Currently the preferred method for large-scale production of solution-processable graphene is via a nonconductive graphene oxide (GO) pathway, which uncontrollably cuts sheets into small pieces and/or introduces nanometer-sized holes in the basal plane. These structural changes significantly decrease some of graphene's remarkable electrical and mechanical properties. Here, we report an unprecedented fast and scalable approach to avoid these problems and directly produce large, highly conductive graphene sheets. This approach intentionally excludes KMnO(4) from Hummers' methods and exploits aromatic oxidation by nitronium ions combined with the unique properties of microwave heating. This combination promotes rapid and simultaneous oxidation of multiple non-neighboring carbon atoms across an entire graphene sheet, thereby producing only a minimum concentration of oxygen moieties sufficient to enable the separation of graphene sheets. Thus, separated graphene sheets, which are referred to as microwave-enabled low-oxygen graphene, are thermally stable and highly conductive without requiring further reduction. Even in the absence of polymeric or surfactant stabilizers, concentrated dispersions of graphene with clean and well-separated graphene sheets can be obtained in both aqueous and organic solvents. This rapid and scalable approach produces high-quality graphene sheets of low oxygen content, enabling a broad spectrum of applications via low-cost solution processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...