Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 18(182): 20210559, 2021 09.
Article in English | MEDLINE | ID: mdl-34493089

ABSTRACT

From the discovery of functionally graded laminated composites, to near-structurally optimized diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea sponge Euplectella aspergillum has continued to inspire biologists, materials scientists and mechanical engineers. Building on these previous efforts, in the present study, we develop an integrated finite element and fluid dynamics approach for investigating structure-function relationships in the complex maze-like organization of helical ridges that surround the main skeletal tube of this species. From these investigations, we discover that not only do these ridges provide additional mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge geometry to other more symmetrical strake-based vortex suppression systems commonly employed in infrastructure applications ranging from antennas to underwater gas and oil pipelines, we find that the unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding rather than delaying their shedding to a more downstream location, thus highlighting their potential benefit in these engineering contexts.


Subject(s)
Glass , Hydrodynamics
2.
Bioinspir Biomim ; 16(4)2021 05 11.
Article in English | MEDLINE | ID: mdl-33513591

ABSTRACT

Fish benefit energetically when swimming in groups, which is reflected in lower tail-beat frequencies for maintaining a given speed. Recent studies further show that fish save the most energy when swimming behind their neighbor such that both the leader and the follower benefit. However, the mechanisms underlying such hydrodynamic advantages have thus far not been established conclusively. The long-standing drafting hypothesis-reduction of drag forces by judicious positioning in regions of reduced oncoming flow-fails to explain advantages of in-line schooling described in this work. We present an alternate hypothesis for the hydrodynamic benefits of in-line swimming based on enhancement of propulsive thrust. Specifically, we show that an idealized school consisting of in-line pitching foils gains hydrodynamic benefits via two mechanisms that are rooted in the undulatory jet leaving the leading foil and impinging on the trailing foil: (i) leading-edge suction on the trailer foil, and (ii) added-mass push on the leader foil. Our results demonstrate that the savings in power can reach as high as 70% for a school swimming in a compact arrangement. Informed by these findings, we designed a modification of the tail propulsor that yielded power savings of up to 56% in a self-propelled autonomous swimming robot. Our findings provide insights into hydrodynamic advantages of fish schooling, and also enable bioinspired designs for significantly more efficient propulsion systems that can harvest some of their energy left in the flow.


Subject(s)
Hydrodynamics , Models, Biological , Animals , Biomechanical Phenomena , Fishes , Swimming
3.
Bioinspir Biomim ; 13(5): 056014, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30018184

ABSTRACT

Biomechanists and biologists alike have yet to fully understand the complex morphology and function of shark denticles, morphologically intricate tooth-like structures embedded into the skin of sharks. Denticles vary in many ways (such as size and shape) depending on shark species, and studies on denticle hydrodynamics have suggested that they may aid in drag reduction as well as increase both lift and thrust. Although previous studies have analyzed the effect of different denticle patterns on hydrodynamic performance, no previous work has focused on the effects of denticle size. Here, we report on the hydrodynamic properties of 3D printed shark skin foils with rigid denticles embedded into a flexible substrate. The patterning of these denticles was based on previously reported designs exhibiting the greatest hydrodynamic performance (which also most closely mimics real shark skin). The size of the denticles and the speed of the flow were varied, and the foils were evaluated under both static and dynamic conditions. Static tests showed drag reduction compared to a smooth control foil (without denticles) for the smallest denticle size, while medium and large denticles exhibited increased drag. Under dynamic testing conditions, the smallest denticles increased the self-propelled swimming speed, while the largest denticles reduced swimming performance. At higher speeds, the smallest denticles were also able to reduce power consumption compared to the control, demonstrating that their hydrodynamic effect depends on both denticle size and swimming speed. Our results thus provide new insights into the role of denticle size in shark swimming hydrodynamics across a range of locomotory modes, while simultaneously providing new design guidelines for the production of high performance low drag surface coatings for aquatic and aerospace applications.


Subject(s)
Biomimetic Materials/chemistry , Sharks/physiology , Skin/physiopathology , Swimming/physiology , Animals , Biomimetics/methods , Dental Pulp Calcification/physiopathology , Hydrodynamics , Tooth/physiology
4.
J R Soc Interface ; 15(139)2018 02.
Article in English | MEDLINE | ID: mdl-29436512

ABSTRACT

There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency.


Subject(s)
Biomimetic Materials , Computer Simulation , Friction , Sharks/anatomy & histology , Skin/anatomy & histology , Animals , Surface Properties
5.
Exp Ther Med ; 12(1): 190-200, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27347038

ABSTRACT

Quantification of the retinal nerve fiber layer (RNFL) by optical coherence tomography (OCT) has been proposed to provide an indirect measure for retinal axonal loss. The aim of the present study was to determine whether interferon beta (IFNß) treatment impedes retinal axonal loss in multiple sclerosis (MS) patients. A total of 48 patients with MS (24 IFNß-1b-treated and 24 untreated subjects) and 12 healthy controls were enrolled in a prospective longitudinal OCT study. OCT measurements were performed for both eyes of each subject at baseline, and at 3-, 6-, and 12-month follow-up examinations using a time-domain OCT. At each visit, we additionally recorded full-field visual evoked potential (VEP) responses and performed the paced auditory serial addition test (PASAT), in addition to expanded disability status scale (EDSS) scoring. Generalized estimation equation (GEE) was used to account for repeated measurements and paired-data. The model-based approach predicted a monthly reduction in the RNFL thickness by 0.19 µm in the eyes of the MS subjects. The reduction was estimated to be 0.17 µm in case of IFNß-treatment and 0.16 µm in case of no treatment. Treatment duration and group allocation were not significantly associated with the RNFL thickness. Inclusion of further longitudinal data (EDSS, two and three second PASAT) in each of our models did not result in any significant association. In summary, over a period of one year no significant association between IFNß-1b treatment and RNFL thinning was identified in patients with MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...