Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(5): 951-958, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36633168

ABSTRACT

The structure and spatial statistical properties of amorphous ellipsoid assemblies have profound scientific and industrial significance in many systems, from cell assays to granular materials. This paper uses a fundamental theoretical relationship for mixture distributions to explain the observations of an extensive X-ray computed tomography study of granular ellipsoidal packings. We study a size-bi-disperse mixture of two types of ellipsoids of revolutions that have the same aspect ratio of α ≈ 0.57 and differ in size, by about 10% in linear dimension, and compare these to mono-disperse systems of ellipsoids with the same aspect ratio. Jammed configurations with a range of packing densities are achieved by employing different tapping protocols. We numerically interrogate the final packing configurations by analyses of the local packing fraction distributions calculated from the Voronoi diagrams. Our main finding is that the bi-disperse ellipsoidal packings studied here can be interpreted as a mixture of two uncorrelated mono-disperse packings, insensitive to the compaction protocol. Our results are consolidated by showing that the local packing fraction shows no correlation beyond their first shell of neighbours in the binary mixtures. We propose a model of uncorrelated binary mixture distribution that describes the observed experimental data with high accuracy. This analysis framework will enable future studies to test whether the observed mean-field behaviour is specific to the particular granular system or the specific parameter values studied here or if it is observed more broadly in other bi-disperse non-spherical particle systems.

2.
Rev Sci Instrum ; 93(8): 083704, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050093

ABSTRACT

This article describes a microtomography experimental platform enabling in situ micro-mechanical study of failure and fragmentation in geomaterials. The system is based on an original high-pressure triaxial flow cell, which is fully integrated into a custom built microtomography scanner equipped with a laboratory x-ray source. The design of the high-precision mechanical apparatus was informed by the concurrent development of advanced tomographic reconstruction methods based on helical scanning and of algorithms correcting for hardware inaccuracies. This experimental system produces very high-quality 3D images of microstructural changes occurring in rocks undergoing mechanical failure and substantial fragmentation. We present the results of two experiments as case studies to demonstrate the capabilities and versatility of this instrumental platform. These experiments tackle various questions related to the onset of rock failure, the hydromechanical coupling and relaxation mechanisms in fractured rocks, or the fragmentation process in geomaterials such as copper ores.

3.
J Mech Behav Biomed Mater ; 90: 404-416, 2019 02.
Article in English | MEDLINE | ID: mdl-30445367

ABSTRACT

Bone is a complex hierarchal structured material with varying porosity and mechanical properties. In particular, human cranial bone is essentially a natural composite consisting of low porosity outer and inner tables and a cancellous interior, or diploë. Experimental studies of biomechanically accurate cranial bone analogues are of high importance for biomechanical, forensics, and clinical researchers, which could improve the understanding and prevention of traumatic injury. Many reported studies use commercially available bone surrogates to draw biomechanical and forensics conclusions; however, their mechanical properties are not tabulated over a range of strain rates. This study elucidates the mechanical viability of three leading commercially available bone surrogates, i.e. Synbone, Sawbone, and Bonesim, over a large range of strain rates (10-3 to 103 s-1). Quasi-static compression testing was conducted using a universal testing machine and a Split-Hopkinson Pressure bar system equipped with high-speed video was used to determine the dynamic mechanical behavior of these materials. Micro-computed X-ray tomography (XRT) were performed on each material to investigate their pore structures and distributions. All materials exhibited strain rate dependent strength behavior, particularly at high loading rates (≥103 s-1). The Young's modulus was found to increase with strain rate from 10-3 to 10-1 s-1 for transversely and longitudinally loaded surrogate materials except for Synbone and the higher density Bonesim. The higher density Bonesim was determined to be the most suitable cranial bone simulant tested based on a combination of transverse Young's Modulus (1500 MPa), yield strength (19 MPa), ultimate strength (49 MPa), and ultimate strain (17%). These materials show limited promise for applications where the measured elastic properties and strengths are of interest.


Subject(s)
Biomimetic Materials , Bone and Bones , Materials Testing , Mechanical Phenomena , Stress, Mechanical , Weight-Bearing
4.
Nat Commun ; 8: 15082, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28497794

ABSTRACT

Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

5.
Article in English | MEDLINE | ID: mdl-26172700

ABSTRACT

Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕ(Bernal)≈0.64. We study packings of monosized hard spheres whose density spans over a wide range (0.59<ϕ<0.72). These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕ(Bernal)≈0.64 and ϕ(c)≈0.68. These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.

6.
Phys Rev Lett ; 113(14): 148001, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25325661

ABSTRACT

We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Z(m) is a key parameter characterizing the crystallization onset. The high fluctuation level of Z(m) and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.

7.
Philos Trans A Math Phys Eng Sci ; 372(2008): 20120035, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24379425

ABSTRACT

Recent advances in the cataloguing of three-dimensional nets mean a systematic search for framework structures with specific properties is now feasible. Theoretical arguments about the elastic deformation of frameworks suggest characteristics of mechanically isotropic networks. We explore these concepts on both isotropic and anisotropic networks by manufacturing porous elastomers with three different periodic net geometries. The blocks of patterned elastomers are subjected to a range of mechanical tests to determine the dependence of elastic moduli on geometric and topological parameters. We report results from axial compression experiments, three-dimensional X-ray computed tomography imaging and image-based finite-element simulations of elastic properties of framework-patterned elastomers.

8.
Phys Rev Lett ; 111(14): 148001, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138272

ABSTRACT

We study the persistence of a geometrically frustrated local order inside partially crystallized packings of equal-sized spheres. Measurements by x-ray tomography reveal previously unseen grain scale rearrangements occurring inside large three-dimensional packings as they crystallize. Three successive structural transitions are detected by a statistical description of the local volume fluctuations. These compaction regimes are related to the disappearance of densely packed tetrahedral patterns of beads. Amorphous packings of monodisperse spheres are saturated with these tetrahedral clusters at Bernal's limiting density (φ≈64%). But, no periodic lattice can be built upon these patterns; they are geometrically frustrated and are thus condemned to vanish while the crystallization occurs. Remarkably, crystallization-induced grain rearrangements can be interpreted in terms of the evolution of key topological features of these aggregates.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 1): 061302, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16089730

ABSTRACT

The three-dimensional structure of large packings of monosized spheres with volume fractions ranging between 0.58 and 0.64 has been studied with x-ray computed tomography. We search for signatures of organization, classifying local arrangements and exploring the effects of local geometrical constrains on the global packing. This study is the largest and the most accurate empirical analysis of disordered packings at the grain-scale to date, mapping over 380,000 sphere coordinates with precision within 0.1% of the sphere diameters. We discuss topological and geometrical methods to characterize and classify these systems emphasizing the implications that local geometry can have on the mechanisms of formation of these amorphous structures. Some of the main results are (1) the observation that the average number of contacts increases with the volume fraction; (2) the discovery that these systems have a very compact contact network; (3) the finding that disordered packing can be locally more efficient than crystalline packings; (4) the observation that the peaks of the radial distribution function follow power law divergences; (5) the discovery that geometrical frustration plays no role in the formation of such amorphous packings.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2A): 036116, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909174

ABSTRACT

We present the results of extensive Monte Carlo simulation of diffusion in disordered media with long-range correlations, a problem which is relevant to transport of contaminants in field-scale porous media, such as aquifers, gas transport in soils, and transport in composite materials. The correlations are generated by a fractional Brownian motion characterized by a Hurst exponent H. For H>1/2 the correlations appear to have no effect, and the transport process is diffusive. However, for H<1/2 and depending on the morphology of the medium, three distinct types of transport processes, namely, anomalous, Fickian, and superdiffusive transport may emerge. Moreover, if the medium is anisotropic and stratified, biased diffusion in it is characterized by power-law growth of the mean square displacements with the time in which the effective exponents characterizing the power-law oscillates log periodically with the time. This result cannot be predicted by any of the currently available continuum theories of transport in disordered media.

SELECTION OF CITATIONS
SEARCH DETAIL
...