Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24925-24932, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882104

ABSTRACT

In this study, we investigate the opto-electro-mechanical properties, thermodynamic stability, and moisture stability of the Ruddlesden-Popper (RP) two-dimensional perovskites of L2PbI4 (L = PEA, FPEA, BA, and BZA) using density functional theory. The goal is to explore their potential application in metastructures. The results show that the stability of FPEA2PbI4 is better than that of PEA2PbI4, BA2PbI4, and BZA2PbI4 due to the replacement of a hydrogen atom with a fluorine atom. On the other hand, BA2PbI4 is more flexible than other materials because it lacks an aromatic ring in its spacer cation, but it is less stable. We introduce a new kind of metastructure composed of an RP perovskite film and conduct an extensive investigation of the quasi-bound states in the continuum (q-BIC) characteristics by near-field analysis and multipole decomposition calculations. The q-BIC resonances in BZA2PBI4 have a greater quality factor due to its larger refractive index in comparison to other materials. Therefore, based on these results, the perovskite materials can be selected for the metastructures from different aspects of stability, flexibility, and refractive index.

2.
Sci Rep ; 13(1): 22411, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104133

ABSTRACT

A Ruddlesden-Popper 2D perovskite PEA2PbX4 (X = I, Br, and Cl) is proposed for metasurface applications. Density functional theory is used to analyze the optical, electrical, mechanical properties, moisture and thermodynamic stability of PEA2PbX4. The refractive index of PEA2PbX4 varies with the halides, resulting in 2.131, 1.901, and 1.842 for X = I, Br, and Cl, respectively. Mechanical properties with Voigt-Reuss-Hill approximations indicate that all three materials are flexible and ductile. Based on the calculations of formation energy and adsorption of water molecules, PEA2PbI4 has superior thermodynamic and moisture stability. We present a novel metasurface based on 2D-PEA2PbI4 and analyze symmetry protected-bound states in the continuum (sp-BIC) excitation. The proposed structure can excite multiple Fano quasi-BICs (q-BICs) with exceptionally high Q-factors. We verify the group theoretical analysis and explore the near-field distribution and far-field scattering of q-BICs. The findings indicate that x-polarized incident waves can excite magnetic toroidal dipole-electromagnetic-induced transparency-BIC and magnetic quadrupole-BIC, while y-polarized incident waves can excite electric toroidal dipole-BIC and electric quadrupole-BIC. The influence of meta-atom and substrate losses, array size limitations, and fabrication tolerances are also discussed. The proposed structure can be employed for applications in the THz region, such as polarization-dependent filters, bidirectional optical switches, and wearable photonic devices.

3.
Sci Rep ; 13(1): 20625, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996608

ABSTRACT

In this paper, an all-dielectric metasurface that measures refractive index and temperature using silicon disks is presented. It can simultaneously produce three resonances excited by a magnetic toroidal dipole, magnetic toroidal quadrupole, and electric toroidal dipole, in the THz region. Asymmetric structures are used to generate two quasi-bound states in the continuum (BIC) resonances with ultra-high-quality factors driven by magnetic and electric toroidal dipoles. We numerically study and show the dominant electromagnetic excitations in the three resonances through near-field analysis and cartesian multipole decomposition. The effects of geometric parameters, scaling properties, polarization angles, incident angles, and silicon losses are also investigated. The proposed metasurface is an excellent candidate for sensing due to the extremely high-quality factor of the quasi-BICs. The results demonstrate that the sensitivities for liquid and gas detection are Sl = 569.1 GHz/RIU and Sg = 529 GHz/RIU for magnetic toroidal dipole, and Sl = 532 GHz/RIU and Sg = 498.3 GHz/RIU for electric toroidal dipole, respectively. Furthermore, the sensitivity for temperature monitoring can reach up to 20.24 nm/°C. This work presents a valuable reference for developing applications in the THz region such as optical modulators, multi-channel biochemical sensing, and optical switches.

SELECTION OF CITATIONS
SEARCH DETAIL
...