Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230142, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913061

ABSTRACT

Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Biological Evolution , Animals , Ecosystem
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913065

ABSTRACT

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Animal Distribution , Animals , Ecosystem , Vertebrates/physiology
3.
Am Nat ; 202(1): E17-E30, 2023 07.
Article in English | MEDLINE | ID: mdl-37384765

ABSTRACT

AbstractEven when environments deteriorate gradually, ecosystems may shift abruptly from one state to another. Such catastrophic shifts are difficult to predict and sometimes to reverse (so-called hysteresis). While well studied in simplified contexts, we lack a general understanding of how catastrophic shifts spread in realistically spatially structured landscapes. For different types of landscape structures, including typical terrestrial modular and riverine dendritic networks, we here investigate landscape-scale stability in metapopulations whose patches can locally exhibit catastrophic shifts. We find that such metapopulations usually exhibit large-scale catastrophic shifts and hysteresis and that the properties of these shifts depend strongly on the metapopulation spatial structure and on the population dispersal rate: an intermediate dispersal rate, a low average degree, or a riverine spatial structure can largely reduce hysteresis size. Our study suggests that large-scale restoration is easier with spatially clustered restoration efforts and in populations characterized by an intermediate dispersal rate.


Subject(s)
Ecosystem
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210386, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35757874

ABSTRACT

Anthropogenic activities are increasingly affecting ecosystems across the globe. Meanwhile, empirical and theoretical evidence suggest that natural systems can exhibit abrupt collapses in response to incremental increases in the stressors, sometimes with dramatic ecological and economic consequences. These catastrophic shifts are faster and larger than expected from the changes in the stressors and happen once a tipping point is crossed. The primary mechanisms that drive ecosystem responses to perturbations lie in their architecture of relationships, i.e. how species interact with each other and with the physical environment and the spatial structure of the environment. Nonetheless, existing theoretical work on catastrophic shifts has so far largely focused on relatively simple systems that have either few species and/or no spatial structure. This work has laid a critical foundation for understanding how abrupt responses to incremental stressors are possible, but it remains difficult to predict (let alone manage) where or when they are most likely to occur in more complex real-world settings. Here, we discuss how scaling up our investigations of catastrophic shifts from simple to more complex-species rich and spatially structured-systems could contribute to expanding our understanding of how nature works and improve our ability to anticipate the effects of global change on ecological systems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Subject(s)
Ecosystem , Environment
5.
Proc Biol Sci ; 289(1972): 20220543, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35414238

ABSTRACT

Human activities put ecosystems under increasing pressure, often resulting in local extinctions. However, it is unclear how local extinctions affect regional processes, such as the distribution of diversity in space, especially if extinctions show spatial patterns, such as being clustered. Therefore, it is crucial to investigate extinctions and their consequences in a spatially explicit framework. Using highly controlled microcosm experiments and theoretical models, we ask here how the number and spatial autocorrelation of extinctions interactively affect metacommunity dynamics. We found that local patch extinctions increased local diversity (α-diversity) and inter-patch diversity (ß-diversity) by delaying the exclusion of inferior competitors. Importantly, recolonization dynamics depended more strongly on the spatial distribution than on the number of patch extinctions: clustered local patch extinctions resulted in slower recovery, lower α-diversity and higher ß-diversity. Our results highlight that the spatial distribution of perturbations should be taken into account when studying and managing spatially structured communities.


Subject(s)
Ecosystem , Humans , Population Dynamics , Spatial Analysis
6.
Ecol Lett ; 24(4): 739-750, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33583087

ABSTRACT

Exploitative parasites are predicted to evolve in highly connected populations or in expanding epidemics. However, many parasites rely on host dispersal to reach new populations, potentially causing conflict between local transmission and global spread. We performed experimental range expansions in interconnected microcosms of the protozoan Paramecium caudatum, allowing natural dispersal of hosts infected with the bacterial parasite Holospora undulata. Parasites from range front treatments facilitated host dispersal and were less virulent, but also invested less in horizontal transmission than parasites from range cores. These differences were consistent with parameter estimates derived from an epidemiological model fitted on population-level time-series data. Our results illustrate how dispersal selection can have profound consequences for the evolution of parasite life history and virulence. Decrypting the eco-evolutionary processes that shape parasite 'dispersal syndromes' may be important for the management of spreading epidemics in changing environments, biological invasions or in other spatial non-equilibrium settings.


Subject(s)
Holosporaceae , Paramecium caudatum , Parasites , Animals , Biological Evolution , Host-Parasite Interactions , Paramecium caudatum/genetics , Virulence
7.
J Theor Biol ; 462: 347-360, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30471298

ABSTRACT

Models in evolutionary game theory traditionally assume symmetric interactions in homogeneous environments. Here, we consider populations evolving in a heterogeneous environment, which consists of patches of different qualities that are occupied by one individual each. The fitness of individuals is not only determined by interactions with others but also by environmental quality. This heterogeneity results in asymmetric interactions where the characteristics of the interaction may depend on an individual's location. Interestingly, in non-varying heterogeneous environments, the long-term dynamics are the same as for symmetric interactions in an average, homogeneous environment. However, introducing environmental feedback between an individual's strategy and the quality of its patch results in rich eco-evolutionary dynamics. Thus, individuals act as ecosystem engineers. The nature of the feedback and the rate of ecological changes can relax or aggravate social dilemmas and promote persistent periodic oscillations of strategy abundance and environmental quality.


Subject(s)
Environment , Feedback , Game Theory , Biological Evolution , Ecosystem , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...