Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502681

ABSTRACT

Public safety agencies have been working on the modernization of their communication networks and the enhancement of their mission-critical capabilities with novel technologies and applications. As part of these efforts, migrating from traditional land mobile radio (LMR) systems toward cellular-enabled, next-generation, mission-critical networks is at the top of these agencies' agendas. In this paper, we provide an overview of cellular technologies ratified by the 3rd Generation Partnership Project (3GPP) to enable next-generation public safety networks. On top of using wireless communication technologies, emergency first responders need to be equipped with advanced devices to develop situational awareness. Therefore, we introduce the concept of the Internet of Life-Saving Things (IoLST) and focus on the role of wearable devices-more precisely, cellular-enabled wearables, in creating new solutions for enhanced public safety operations. Finally, we conduct a performance evaluation of wearable-based, mission-critical applications. So far, most of the mission-critical service evaluations target latency performance without taking into account reliability requirements. In our evaluation, we examine the impact of device- and application-related parameters on the latency and the reliability performance. We also identify major future considerations for better support of the studied requirements in next-generation public safety networks.


Subject(s)
Wearable Electronic Devices , Wireless Technology , Communication , Reproducibility of Results
2.
Sensors (Basel) ; 21(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205190

ABSTRACT

Automated systems have been seamlessly integrated into several industries as part of their industrial automation processes. Employing automated systems, such as autonomous vehicles, allows industries to increase productivity, benefit from a wide range of technologies and capabilities, and improve workplace safety. So far, most of the existing systems consider utilizing one type of autonomous vehicle. In this work, we propose a collaboration of different types of unmanned vehicles in maritime offshore scenarios. Providing high capacity, extended coverage, and better quality of services, autonomous collaborative systems can enable emerging maritime use cases, such as remote monitoring and navigation assistance. Motivated by these potential benefits, we propose the deployment of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV) in an autonomous collaborative communication system. Specifically, we design high-speed, directional communication links between a terrestrial control station and the two unmanned vehicles. Using measurement and simulation results, we evaluate the performance of the designed links in different communication scenarios and we show the benefits of employing multiple autonomous vehicles in the proposed communication system.

3.
Sensors (Basel) ; 21(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199446

ABSTRACT

Today, ensuring work safety is considered to be one of the top priorities for various industries. Workplace injuries, illnesses, and deaths often entail substantial production and financial losses, governmental checks, series of dismissals, and loss of reputation. Wearable devices are one of the technologies that flourished with the fourth industrial revolution or Industry 4.0, allowing employers to monitor and maintain safety at workplaces. The purpose of this article is to systematize knowledge in the field of industrial wearables' safety to assess the relevance of their use in enterprises as the technology maintaining occupational safety, to correlate the benefits and costs of their implementation, and, by identifying research gaps, to outline promising directions for future work in this area. We categorize industrial wearable functions into four classes (monitoring, supporting, training, and tracking) and provide a classification of the metrics collected by wearables to better understand the potential role of wearable technology in preserving workplace safety. Furthermore, we discuss key communication technologies and localization techniques utilized in wearable-based work safety solutions. Finally, we analyze the main challenges that need to be addressed to further enable and support the use of wearable devices for industrial work safety.


Subject(s)
Occupational Health , Wearable Electronic Devices , Monitoring, Physiologic , Surveys and Questionnaires , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL
...