Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Biomed Opt ; 29(4): 046003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38650893

ABSTRACT

Significance: Current methods for wound healing assessment rely on visual inspection, which gives qualitative information. Optical methods allow for quantitative non-invasive measurements of optical properties relevant to wound healing. Aim: Spatial frequency domain imaging (SFDI) measures the absorption and reduced scattering coefficients of tissue. Typically, SFDI assumes homogeneous tissue; however, layered structures are present in skin. We evaluate a multi-frequency approach to process SFDI data that estimates depth-specific scattering over differing penetration depths. Approach: Multi-layer phantoms were manufactured to mimic wound healing scattering contrast in depth. An SFDI device imaged these phantoms and data were processed according to our multi-frequency approach. The depth sensitive data were then compared with a two-layer scattering model based on light fluence. Results: The measured scattering from the phantoms changed with spatial frequency as our two-layer model predicted. The performance of two δ-P1 models solutions for SFDI was consistently better than the standard diffusion approximation. Conclusions: We presented an approach to process SFDI data that returns depth-resolved scattering contrast. This method allows for the implementation of layered optical models that more accurately represent physiologic parameters in thin tissue structures as in wound healing.


Subject(s)
Phantoms, Imaging , Scattering, Radiation , Skin , Skin/diagnostic imaging , Skin/chemistry , Humans , Models, Biological , Light , Wound Healing/physiology , Optical Imaging/methods , Image Processing, Computer-Assisted/methods
2.
Front Bioeng Biotechnol ; 12: 1328504, 2024.
Article in English | MEDLINE | ID: mdl-38562669

ABSTRACT

Introduction: The role of Adipose-derived mesenchymal stem cells (AD-MSCs) in skin wound healing remains to be fully characterized. This study aims to evaluate the regenerative potential of autologous AD-MSCs in a non-healing porcine wound model, in addition to elucidate key miRNA-mediated epigenetic regulations that underlie the regenerative potential of AD-MSCs in wounds. Methods: The regenerative potential of autologous AD-MSCs was evaluated in porcine model using histopathology and spatial frequency domain imaging. Then, the correlations between miRNAs and proteins of AD-MSCs were evaluated using an integration analysis in primary human AD-MSCs in comparison to primary human keratinocytes. Transfection study of AD-MSCs was conducted to validate the bioinformatics data. Results: Autologous porcine AD-MSCs improved wound epithelialization and skin properties in comparison to control wounds. We identified 26 proteins upregulated in human AD-MSCs, including growth and angiogenic factors, chemokines and inflammatory cytokines. Pathway enrichment analysis highlighted cell signalling-associated pathways and immunomodulatory pathways. miRNA-target modelling revealed regulations related to genes encoding for 16 upregulated proteins. miR-155-5p was predicted to regulate Fibroblast growth factor 2 and 7, C-C motif chemokine ligand 2 and Vascular cell adhesion molecule 1. Transfecting human AD-MSCs cell line with anti-miR-155 showed transient gene silencing of the four proteins at 24 h post-transfection. Discussion: This study proposes a positive miR-155-mediated gene regulation of key factors involved in wound healing. The study represents a promising approach for miRNA-based and cell-free regenerative treatment for difficult-to-heal wounds. The therapeutic potential of miR-155 and its identified targets should be further explored in-vivo.

3.
J Biomed Opt ; 27(11)2022 11.
Article in English | MEDLINE | ID: mdl-36358008

ABSTRACT

Significance: Spatial frequency domain imaging (SFDI) and spatial frequency domain spectroscopy (SFDS) are emerging tools to non-invasively assess tissues. However, the presence of aberrations can complicate processing and interpretation. Aim: This study develops a method to characterize optical aberrations when performing SFDI/S measurements. Additionally, we propose a post-processing method to compensate for these aberrations and recover arbitrary subsurface optical properties. Approach: Using a custom SFDS system, we extract absorption and scattering coefficients from a reference phantom at 0 to 15 mm distances from the ideal focus. In post-processing, we characterize aberrations in terms of errors in absorption and scattering relative to the expected in-focus values. We subsequently evaluate a compensation approach in multi-distance measurements of phantoms with different optical properties and in multi-layer phantom constructs to mimic subsurface targets. Results: Characterizing depth-specific aberrations revealed a strong power law such as wavelength dependence from ∼40 to ∼10 % error in both scattering and absorption. When applying the compensation method, scattering remained within 1.3% (root-mean-square) of the ideal values, independent of depth or top layer thickness, and absorption remained within 3.8%. Conclusions: We have developed a protocol that allows for instrument-specific characterization and compensation for the effects of defocus and chromatic aberrations on spatial frequency domain measurements.


Subject(s)
Diagnostic Imaging , Optical Imaging , Phantoms, Imaging , Diagnostic Imaging/methods , Spectrum Analysis , Optical Imaging/methods
4.
Biomed Opt Express ; 13(5): 2909-2928, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35774336

ABSTRACT

Clinical studies have demonstrated that epidermal pigmentation level can affect cerebral oximetry measurements. To evaluate the robustness of these devices, we have developed a phantom-based test method that includes an epidermis-simulating layer with several melanin concentrations and a 3D-printed cerebrovascular module. Measurements were performed with neonatal, pediatric and adult sensors from two commercial oximeters, where neonatal probes had shorter source-detector separation distances. Referenced blood oxygenation levels ranged from 30 to 90%. Cerebral oximeter outputs exhibited a consistent decrease in saturation level with simulated melanin content; this effect was greatest at low saturation levels, producing a change of up to 15%. Dependence on pigmentation was strongest in a neonatal sensor, possibly due to its high reflectivity. Overall, our findings indicate that a modular channel-array phantom approach can provide a practical tool for assessing the impact of skin pigmentation on cerebral oximeter performance and that modifications to algorithms and/or instrumentation may be needed to mitigate pigmentation bias.

5.
J Biomed Opt ; 27(7)2022 02.
Article in English | MEDLINE | ID: mdl-35106979

ABSTRACT

SIGNIFICANCE: Tissue simulating phantoms are an important part of validating biomedical optical techniques. Tissue pathology in inflammation and oedema involves changes in both water and hemoglobin fractions. AIM: We present a method to create solid gelatin-based phantoms mimicking inflammation and oedema with adjustable water and hemoglobin fractions. APPROACH: One store-bought gelatin and one research grade gelatin were evaluated. Different water fractions were obtained by varying the water-to-gelatin ratio. Ferrous stabilized human hemoglobin or whole human blood was added as absorbers, and the stability and characteristics of each were compared. Intralipid® was used as the scatterer. All phantoms were characterized using spatial frequency domain spectroscopy. RESULTS: The estimated water fraction varied linearly with expected values (R2 = 0.96 for the store-bought gelatin and R2 = 0.99 for the research grade gelatin). Phantoms including ferrous stabilized hemoglobin stayed stable up to one day but had methemoglobin present at day 0. The phantoms with whole blood remained stable up to 3 days using the store-bought gelatin. CONCLUSIONS: A range of physiological relevant water fractions was obtained for both gelatin types, with the stability of the phantoms including hemoglobin differing between the gelatin type and hemoglobin preparation. These low-cost phantoms can incorporate other water-based chromophores and be fabricated as thin sheets to form multilayered structures.


Subject(s)
Gelatin , Water , Gelatin/chemistry , Hemoglobins , Humans , Inflammation , Microdialysis , Phantoms, Imaging
6.
J Biomed Opt ; 27(7)2021 12.
Article in English | MEDLINE | ID: mdl-34850613

ABSTRACT

SIGNIFICANCE: For optical methods to accurately assess hemoglobin oxygen saturation in vivo, an independently verifiable tissue-like standard is required for validation. For this purpose, we propose three hemoglobin preparations and evaluate methods to characterize them. AIM: To spectrally characterize three different hemoglobin preparations using multiple spectroscopic methods and to compare their absorption spectra to commonly used reference spectra. APPROACH: Absorption spectra of three hemoglobin preparations in solution were characterized using spectroscopic collimated transmission: whole blood, lysed blood, and ferrous-stabilized hemoglobin. Tissue-mimicking phantoms composed of Intralipid, and the hemoglobin solutions were characterized using spatial frequency-domain spectroscopy (SFDS) and enhanced perfusion and oxygen saturation (EPOS) techniques while using yeast to deplete oxygen. RESULTS: All hemoglobin preparations exhibited similar absorption spectra when accounting for methemoglobin and scattering in their oxyhemoglobin and deoxyhemoglobin forms, respectively. However, systematic differences were observed in the fitting depending on the reference spectra used. For the tissue-mimicking phantoms, SFDS measurements at the surface of the phantom were affected by oxygen diffusion at the interface with air, associated with higher values than for the EPOS system. CONCLUSIONS: We show the validity of different blood phantoms and what considerations need to be addressed in each case to utilize them equivalently.


Subject(s)
Hemoglobins , Oxyhemoglobins , Methemoglobin , Oxygen , Oxygen Saturation
7.
J Biomed Opt ; 26(1)2021 01.
Article in English | MEDLINE | ID: mdl-33432788

ABSTRACT

SIGNIFICANCE: Assessment of disease using optical coherence tomography is an actively investigated problem, owing to many unresolved challenges in early disease detection, diagnosis, and treatment response monitoring. The early manifestation of disease or precancer is typically associated with subtle alterations in the tissue dielectric and ultrastructural morphology. In addition, biological tissue is known to have ultrastructural multifractality. AIM: Detection and characterization of nanosensitive structural morphology and multifractality in the tissue submicron structure. Quantification of nanosensitive multifractality and its alteration in progression of tumor. APPROACH: We have developed a label free nanosensitive multifractal detrended fluctuation analysis(nsMFDFA) technique in combination with multifractal analysis and nanosensitive optical coherence tomography (nsOCT). The proposed method deployed for extraction and quantification of nanosensitive multifractal parameters in mammary fat pad (MFP). RESULTS: Initially, the nsOCT approach is numerically validated on synthetic submicron axial structures. The nsOCT technique was applied to pathologically characterized MFP of murine breast tissue to extract depth-resolved nanosensitive submicron structures. Subsequently, two-dimensional MFDFA were deployed on submicron structural en face images to extract nanosensitive tissue multifractality. We found that nanosensitive multifractality increases in transition from healthy to tumor. CONCLUSIONS: This method for extraction of nanosensitive tissue multifractality promises to provide a noninvasive diagnostic tool for early disease detection and monitoring treatment response. The novel ability to delineate the dominant submicron scale nanosensitive multifractal properties may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.


Subject(s)
Fractals , Neoplasms , Animals , Mice , Tomography, Optical Coherence
9.
J Biomed Opt ; 25(8): 1-12, 2020 08.
Article in English | MEDLINE | ID: mdl-32755076

ABSTRACT

SIGNIFICANCE: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to measure absorption and scattering of tissue, from which several chromophore concentrations (e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated. Employing a method to extract additional spectral bands from RGB components (that we named cross-channels), we designed a handheld SFDI device to account for these pigments, using low-cost, consumer-grade components for its implementation and characterization. AIM: With only three broad spectral bands (red, green, blue, or RGB), consumer-grade devices are often too limited. We present a methodology to increase the number of spectral bands in SFDI devices that use RGB components without hardware modification. APPROACH: We developed a compact low-cost RGB spectral imager using a color CMOS camera and LED-based mini projector. The components' spectral properties were characterized and additional cross-channel bands were calculated. An alternative characterization procedure was also developed that makes use of low-cost equipment, and its results were compared. The device performance was evaluated by measurements on tissue-simulating optical phantoms and in-vivo tissue. The measurements were compared with another quantitative spectroscopy method: spatial frequency domain spectroscopy (SFDS). RESULTS: Out of six possible cross-channel bands, two were evaluated to be suitable for our application and were fully characterized (520 ± 20 nm; 556 ± 18 nm). The other four cross-channels presented a too low signal-to-noise ratio for this implementation. In estimating the optical properties of optical phantoms, the SFDI data have a strong linear correlation with the SFDS data (R2 = 0.987, RMSE = 0.006 for µa, R2 = 0.994, RMSE = 0.078 for µs'). CONCLUSIONS: We extracted two additional spectral bands from a commercial RGB system at no cost. There was good agreement between our device and the research-grade SFDS system. The alternative characterization procedure we have presented allowed us to measure the spectral features of the system with an accuracy comparable to standard laboratory equipment.


Subject(s)
Diagnostic Imaging , Skin , Hemoglobins/analysis , Phantoms, Imaging , Skin/chemistry , Skin/diagnostic imaging , Spectrum Analysis
10.
J Biomed Opt ; 25(1): 1-13, 2020 01.
Article in English | MEDLINE | ID: mdl-31925946

ABSTRACT

Significance: Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption (µa) and reduced scattering (µs') on a pixel-by-pixel basis. Measurements of µa at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. We present here openSFDI: an open-source guide for building a low-cost, small-footprint, three-wavelength SFDI system capable of quantifying µa and µs' as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The companion website provides a complete parts list along with detailed instructions for assembling the openSFDI system.

Aim: We describe the design of openSFDI and report on the accuracy and precision of optical property extractions for three different systems fabricated according to the instructions on the openSFDI website.

Approach: Accuracy was assessed by measuring nine tissue-simulating optical phantoms with a physiologically relevant range of µa and µs' with the openSFDI systems and a commercial SFDI device. Precision was assessed by repeatedly measuring the same phantom over 1 h.

Results: The openSFDI systems had an error of 0 ± 6 % in µa and -2 ± 3 % in µs', compared to a commercial SFDI system. Bland-Altman analysis revealed the limits of agreement between the two systems to be ± 0.004 mm - 1 for µa and -0.06 to 0.1 mm - 1 for µs'. The openSFDI system had low drift with an average standard deviation of 0.0007 mm - 1 and 0.05 mm - 1 in µa and µs', respectively.

,

Conclusion: The openSFDI provides a customizable hardware platform for research groups seeking to utilize SFDI for quantitative diffuse optical imaging.


Subject(s)
Equipment Design , Hemoglobins/analysis , Image Processing, Computer-Assisted/instrumentation , Optical Imaging/instrumentation , Oxyhemoglobins/analysis , Phantoms, Imaging , Spectrum Analysis
11.
J Biomed Opt ; 24(7): 1-9, 2019 07.
Article in English | MEDLINE | ID: mdl-31271005

ABSTRACT

We introduce a method for quantitative hyperspectral optical imaging in the spatial frequency domain (hs-SFDI) to image tissue absorption (µa) and reduced scattering (µs') parameters over a broad spectral range. The hs-SFDI utilizes principles of spatial scanning of the spectrally dispersed output of a supercontinuum laser that is sinusoidally projected onto the tissue using a digital micromirror device. A scientific complementary metal-oxide-semiconductor camera is used for capturing images that are demodulated and analyzed using SFDI computational models. The hs-SFDI performance is validated using tissue-simulating phantoms over a range of µa and µs' values. Quantitative hs-SFDI images are obtained from an ex-vivo beef sample to spatially resolve concentrations of oxy-, deoxy-, and met-hemoglobin, as well as water and fat fractions. Our results demonstrate that the hs-SFDI can quantitatively image tissue optical properties with 1000 spectral bins in the 580- to 950-nm range over a wide, scalable field of view. With an average accuracy of 6.7% and 12.3% in µa and µs', respectively, compared to conventional methods, hs-SFDI offers a promising approach for quantitative hyperspectral tissue optical imaging.


Subject(s)
Optical Imaging/methods , Algorithms , Animals , Cattle , Coloring Agents/chemistry , Equipment Design , Image Processing, Computer-Assisted , Lasers , Models, Biological , Muscle, Skeletal/diagnostic imaging , Optical Imaging/instrumentation , Phantoms, Imaging
12.
J Biomed Opt ; 24(2): 1-4, 2019 02.
Article in English | MEDLINE | ID: mdl-30724041

ABSTRACT

Burn wounds and wound healing invoke several biological processes that may complicate the interpretation of spectral imaging data. Through analysis of spatial frequency domain spectroscopy data (450 to 1000 nm) obtained from longitudinal investigations using a graded porcine burn wound healing model, we have identified features in the absorption spectrum that appear to suggest the presence of hemoglobin breakdown products, e.g., methemoglobin. Our results show that the calculated concentrations of methemoglobin directly correlate with burn severity, 24 h after the injury. In addition, tissue parameters such as oxygenation (StO2) and water fraction may be underestimated by 20% and 78%, respectively, if methemoglobin is not included in the spectral analysis.


Subject(s)
Burns/diagnostic imaging , Hemoglobins/chemistry , Spectrophotometry/methods , Algorithms , Animals , Burns/blood , Disease Models, Animal , Hemoglobins/analysis , Least-Squares Analysis , Melanins/chemistry , Methemoglobin/chemistry , Monte Carlo Method , Optical Imaging/methods , Oxygen/chemistry , Oxyhemoglobins/chemistry , Skin/metabolism , Swine , Water/chemistry , Wound Healing
13.
J Biomed Opt ; 24(7): 1-11, 2018 11.
Article in English | MEDLINE | ID: mdl-30456934

ABSTRACT

We present a method to recover absorption and reduced scattering spectra for each layer of a two-layer turbid media from spatial frequency-domain spectroscopy data. We focus on systems in which the thickness of the top layer is less than the transport mean free path ( 0.1 - 0.8l * ) . We utilize an analytic forward solver, based upon the N'th-order spherical harmonic expansion with Fourier decomposition ( SHEFN ) method in conjunction with a multistage inverse solver. We test our method with data obtained using spatial frequency-domain spectroscopy with 32 evenly spaced wavelengths within λ = 450 to 1000 nm on six-layered tissue phantoms with distinct optical properties. We demonstrate that this approach can recover absorption and reduced scattering coefficient spectra for both layers with accuracy comparable with current Monte Carlo methods but with lower computational cost and potential flexibility to easily handle variations in parameters such as the scattering phase function or material refractive index. To our knowledge, this approach utilizes the most accurate deterministic forward solver used in such problems and can successfully recover properties from a two-layer media with superficial layer thicknesses.


Subject(s)
Optical Imaging/methods , Signal Processing, Computer-Assisted , Spectrum Analysis/methods , Equipment Design , Models, Biological , Monte Carlo Method , Optical Imaging/instrumentation , Phantoms, Imaging , Refractometry , Spectrum Analysis/instrumentation
14.
J Biomed Opt ; 23(4): 1-12, 2018 04.
Article in English | MEDLINE | ID: mdl-29633609

ABSTRACT

With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.


Subject(s)
Optical Imaging/methods , Spectrum Analysis/methods , Adult , Animals , Burns/diagnostic imaging , Carotenoids/analysis , Female , Hemoglobins/analysis , Humans , Male , Melanins/analysis , Middle Aged , Multimodal Imaging , Optical Imaging/instrumentation , Phantoms, Imaging , Rats , Skin/diagnostic imaging , Skin Aging/physiology , Spectrum Analysis/instrumentation , Young Adult
15.
J Biomed Opt ; 22(11): 1-9, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29139245

ABSTRACT

A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (SO2), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for SO2 was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (µs'), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 µm. In conclusion, the skin microcirculation parameters fRBC and SO2, as well as, µs' and D are estimated with reasonable accuracy.


Subject(s)
Dermatology/instrumentation , Dermatology/methods , Microcirculation , Skin/diagnostic imaging , Humans , Laser-Doppler Flowmetry , Models, Biological , Monte Carlo Method , Oxygen/analysis , Phantoms, Imaging , Skin/blood supply
16.
Rev Sci Instrum ; 88(9): 094302, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964218

ABSTRACT

Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, µa, and scattering, µs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (∼1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.


Subject(s)
Skin , Spectrum Analysis/instrumentation
17.
J Biomed Opt ; 22(7): 76013, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28727869

ABSTRACT

Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions


Subject(s)
Diagnostic Imaging/methods , Phantoms, Imaging , Optical Devices/standards , Optics and Photonics/standards , Silicones
18.
Lasers Surg Med ; 49(3): 293-304, 2017 03.
Article in English | MEDLINE | ID: mdl-28220508

ABSTRACT

BACKGROUND AND OJECTIVES: The current standard for diagnosis of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Several new technologies are shifting focus to burn care in an attempt to help quantify not only burn depth but also the progress of healing. While accurate early assessment of partial thickness burns is critical for dictating the course of treatment, the ability to quantitatively monitor wound status over time is critical for understanding treatment efficacy. SFDI and LSI are both non-invasive imaging modalities that have been shown to have great diagnostic value for burn severity, but have yet to be tested over the course of wound healing. METHODS: In this study, a hairless rat model (n = 6, 300-450 g) was used with a four pronged comb to create four identical partial thickness burns (superficial n = 3 and deep n = 3) that were used to monitor wound healing over a 28 days period. Weekly biopsies were taken for histological analysis to verify wound progression. Both SFDI and LSI were performed weekly to track the evolution of hemodynamic (blood flow and oxygen saturation) and structural (reduced scattering coefficient) properties for the burns. RESULTS: LSI showed significant changes in blood flow from baseline to 220% in superficial and 165% in deep burns by day 7. In superficial burns, blood flow returned to baseline levels by day 28, but not for deep burns where blood flow remained elevated. Smaller increases in blood flow were also observed in the surrounding tissue over the same time period. Oxygen saturation values measured with SFDI showed a progressive increase from baseline values of 66-74% in superficial burns and 72% in deep burns by day 28. Additionally, SFDI showed significant decreases in the reduced scattering coefficient shortly after the burns were created. The scattering coefficient progressively decreased in the wound area, but returned towards baseline conditions at the end of the 28 days period. Scattering changes in the surrounding tissue remained constant despite the presence of hemodynamic changes. CONCLUSIONS: Here, we show that LSI and SFDI are capable of monitoring changes in hemodynamic and scattering properties in burn wounds over a 28 days period. These results highlight the potential insights that can be gained by using non-invasive imaging technologies to study wound healing. Further development of these technologies could be revolutionary for wound monitoring and studying the efficacy of different treatments. Lasers Surg. Med. 49:293-304, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Burns/diagnostic imaging , Burns/pathology , Laser-Doppler Flowmetry/methods , Wound Healing/physiology , Animals , Biopsy, Needle , Disease Models, Animal , Evaluation Studies as Topic , Immunohistochemistry , Injury Severity Score , Male , Oxygen Consumption/physiology , Photography , Random Allocation , Rats , Rats, Hairless , Regional Blood Flow/physiology , Skin Pigmentation , Time Factors
19.
Nanotechnology ; 28(3): 035101, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27966473

ABSTRACT

Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 µm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 µM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (µ a) and reduced scattering (µ s') coefficients of these NETs. For a given NETs diameter, values of µ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of µ a when using ICG concentrations of 10 and 20 µM, and showed increased values of µ s' as compared to nano-sized NETs. Spectral profiles of µ s' for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.


Subject(s)
Biomimetic Materials/chemistry , Erythrocytes/chemistry , Molecular Probes/chemistry , Optical Imaging/methods , Optics and Photonics/methods , Animals , Cattle , Indocyanine Green/chemistry , Light , Monte Carlo Method , Optical Imaging/instrumentation , Optics and Photonics/instrumentation , Scattering, Radiation , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Theranostic Nanomedicine/methods , Transducers
20.
J Biomed Opt ; 21(11): 114001, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27830262

ABSTRACT

Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect's higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).


Subject(s)
Dermoscopy/methods , Melanins/chemistry , Nevus/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Skin/diagnostic imaging , Spectrum Analysis/methods , Algorithms , Equipment Design , Humans , Image Interpretation, Computer-Assisted/methods , Melanins/analysis , Nevus/blood supply , Nevus/chemistry , Optical Imaging/methods , Phantoms, Imaging , Skin/blood supply , Skin/chemistry , Skin Neoplasms/blood supply , Skin Neoplasms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...