Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890560

ABSTRACT

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Subject(s)
Festuca , Lolium , Phenotype , Seeds , Lolium/growth & development , Lolium/genetics , Lolium/anatomy & histology , Festuca/genetics , Festuca/growth & development , Festuca/anatomy & histology , Seeds/growth & development , Seeds/genetics , Seeds/anatomy & histology
2.
Theor Appl Genet ; 129(10): 1915-32, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27435735

ABSTRACT

KEY MESSAGE: Molecular markers including a potential resistance gene co-segregating with the LpPg1 stem rust resistance locus in perennial ryegrass were identified by massive analysis of cDNA ends (MACE) transcriptome profiling. Stem rust caused by Puccinia graminis subsp. graminicola is a severe fungal disease in the forage crop perennial ryegrass and other grasses. The previously identified LpPg1 locus confers efficient resistance against the pathogen. The aim of this study was to identify candidate genes involved in rust resistance and to use them as a resource for the development of molecular markers for LpPg1. To identify such candidates, bulked segregant analysis was combined with NGS-based massive analysis of cDNA ends (MACE) transcriptome profiling. Total RNA was isolated from bulks of infected and non-infected leaf segments from susceptible and resistant genotypes of a full-sibling mapping population and their respective parental lines and MACE was performed. Bioinformatic analysis detected 330 resistance-specific SNPs in 178 transcripts and 341 transcripts that were exclusively expressed in the resistant bulk. The sequences of many of these transcripts were homologous to genes in distinct regions of chromosomes one and four of the model grass Brachypodium distachyon. Of these, 30 were genetically mapped to a 50.8 cM spanning region surrounding the LpPg1 locus. One candidate NBS-LRR gene co-segregated with the resistance locus. Quantitative analysis of gene expression suggests that LpPg1 mediates an efficient resistance mechanism characterized by early recognition of the pathogen, fast defense signaling and rapid induction of antifungal proteins. We demonstrate here that MACE is a cost-efficient, fast and reliable tool that detects polymorphisms for genetic mapping of candidate resistance genes and simultaneously reveals deep insight into the molecular and genetic base of resistance.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Lolium/genetics , Plant Diseases/genetics , Sequence Analysis, DNA/methods , Basidiomycota , Computational Biology , DNA, Complementary/genetics , DNA, Plant/genetics , Genetic Markers , Lolium/microbiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide
3.
BMC Plant Biol ; 15: 197, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26269119

ABSTRACT

BACKGROUND: Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis. RESULTS: We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth. CONCLUSIONS: In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Signal Transduction , Transcription Factors/genetics , Adaptation, Physiological , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Photoperiod , Quantitative Trait Loci , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...