Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 161: 105801, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33691155

ABSTRACT

Vaginal infections caused by various pathogens such as fungi, viruses and protozoa are frequently seen. Systemic and local treatments can be applied to eliminate these infections. Novel vaginal drug delivery systems can be used to provide local treatment. Vaginal drug delivery systems prevent systemic side effects and can provide long-term drug release in the vaginal area. Nanofibers and nanoparticles have a wide range of applications and can also be preferred as vaginal drug delivery systems. Benzydamine is a non-steroidal anti-inflammatory and antiseptic drug which is used for treatment of vaginal infections. The aim of this study was to compare the nanofiber and gel formulations containing lyophilized benzydamine nanoparticles with nanofiber and gel formulations containing free benzydamine, and to provide prolonged release for protection from the vaginal infections. Ionic gelation method was used for the preparation of benzydamine loaded nanoparticles. To produce benzydamine nanoparticles loaded nanofiber formulations, polyvinylpyrrolidone (PVP) solutions were prepared at 10% concentrations and mixed with nanoparticles. Hydroxypropyl methylcellulose (HPMC) was used as a gelling agent at the concentration of 1% for the vaginal gel formulation. Nanoparticles were characterized in terms of zeta potential, polydispersity index and particle size. Viscosity, surface tension and conductivity values of the polymer solutions were measured for the electrospinning. Mechanical properties, contact angle and drug loading capacity of the fibers were determined. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), fourier-transform infrared (FT-IR) spectroscopy, mucoadhesion, ex vivo permeability studies and in vitro release studies were performed for the selected formulations. Ex vivo permeability studies were performed using Franz diffusion cell method. SEM and TEM images showed that fiber diameters increased with loading of nanoparticles. DSC studies showed no interaction between excipients used in the formulation. Tensile strength and elongation at break values of the fibers increased with the loading of nanoparticles, and the contact angle values of the fibers were found to be 0°. Addition of benzydamine nanoparticles to gel and nanofiber formulations increased mucoadhesion compared to free benzydamine loading formulations. Benzydamine nanoparticle loaded gel and nanofiber formulations penetrated slower than that of free benzydamine gel and fiber formulations. The results demonstrated that benzydamine and benzydamine nanoparticle loaded fibers and gels could be a potential drug delivery system for the treatment of vaginal infections. Chitosan nanoparticle loaded nanofiber formulations are offered as an alternative controlled release vaginal formulations for vaginal infections.


Subject(s)
Benzydamine , Chitosan , Nanofibers , Nanoparticles , Delayed-Action Preparations , Female , Humans , Particle Size , Spectroscopy, Fourier Transform Infrared
2.
Drug Dev Ind Pharm ; 46(6): 1015-1025, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32393132

ABSTRACT

Objective: To develop and characterize innovative vaginal dosage forms for the treatment of bacterial vaginosis (BV).Significance: This study is the first comparative evaluation of the metronidazole (MET)-loaded polyvinylpyrrolidone (PVP) nanofiber formulations on BV treatment. Vaginal nanofibers are one of the potential innovative dosage forms for BV treatment because of their flexible, mucoadhesive, and easy application in vaginal application which can be applied by the mucosal route.Methods: Blank and MET-loaded PVP solutions were prepared at three different concentrations (10, 12.5, 15%) for produce nanofiber. The suitability of the viscosities, surface tensions, and conductivity values of the solutions used to produce nanofibers for the electrospinning process has been evaluated. Scanning electron microscopy, mucoadhesion, permeability, Fourier transform infrared spectroscopy, differential scanning calorimetry, and drug release tests were performed to reveal the physical, chemical, and pharmaceutical properties of the nanofibers. Mechanical properties, and contact angle of the fibers were also determined. Gel and solution formulations containing MET were prepared for comparative studies.Results: All polymer solutions were found to be suitable for electrospinning process. PVP concentration directly affected nanofiber diameter, mechanical, and mucoadhesion properties of nanofibers. The release profiles of the drug from the nanofibers were similar for all concentration of PVP and release from the fibers was rapid. The permeability coefficient of MET from nanofibers was increased more than gel and solution formulations.Conclusions: Vaginal use of MET-loaded nanofibers has been shown to be a potential drug delivery system for the treatment of BV.


Subject(s)
Metronidazole/chemistry , Nanofibers , Pharmaceutical Preparations , Drug Delivery Systems , Drug Liberation , Female , Humans , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...