Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Lipid Res ; 63(1): 100144, 2022 01.
Article in English | MEDLINE | ID: mdl-34710432

ABSTRACT

LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.


Subject(s)
Lipoproteins , Triglycerides
2.
Front Cardiovasc Med ; 7: 617842, 2020.
Article in English | MEDLINE | ID: mdl-33585584

ABSTRACT

α-Klotho (Klotho) exists in two different forms, a membrane-bound and soluble form, which are highly expressed in the kidney. Both forms play an important role in various physiological and pathophysiological processes. Recently, it has been identified that soluble Klotho arises exclusively from shedding or proteolytic cleavage. In this review, we will highlight the mechanisms underlying the shedding of Klotho and the functional effects of soluble Klotho, especially in CKD and the associated cardiovascular complications. Klotho can be cleaved by a process called shedding, releasing the ectodomain of the transmembrane protein. A disintegrin and metalloproteases ADAM10 and ADAM17 have been demonstrated to be mainly responsible for this shedding, resulting in either full-length fragments or sub-fragments called KL1 and KL2. Reduced levels of soluble Klotho have been associated with kidney disease, especially chronic kidney disease (CKD). In line with a protective effect of soluble Klotho in vascular function and calcification, CKD and the reduced levels of soluble Klotho herein are associated with cardiovascular complications. Interestingly, although it has been demonstrated that soluble Klotho has a multitude of effects its direct impact on vascular cells and the exact underlying mechanisms remain largely unknown and should therefore be a major focus of further research. Moreover, functional implications of the cleavage process resulting in KL1 and KL2 fragments remain to be elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...