Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7105, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160174

ABSTRACT

Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues. Our data reveals significant changes in spatial gene expression in the malaria-infected tissues. These include changes related to lipid metabolism in the proximity to sites of Plasmodium infection, distinct inflammation programs between lobular zones, and regions with enrichment of different inflammatory cells, which we term 'inflammatory hotspots'. We also observe significant upregulation of genes involved in inflammation in the control liver tissues of mice injected with mosquito salivary gland components. However, this response is considerably delayed compared to that observed in P. berghei-infected mice. Our study establishes a benchmark for investigating transcriptome changes during host-parasite interactions in tissues, it provides informative insights regarding in vivo study design linked to infection and offers a useful tool for the discovery and validation of de novo intervention strategies aimed at malaria liver stage infection.


Subject(s)
Liver , Malaria , Plasmodium berghei , Animals , Liver/parasitology , Liver/metabolism , Plasmodium berghei/physiology , Malaria/parasitology , Mice , Host-Pathogen Interactions , Transcriptome , Host-Parasite Interactions , Single-Cell Analysis , Mice, Inbred C57BL , Female , Inflammation , Gene Expression Profiling , Lipid Metabolism
2.
PLoS One ; 19(1): e0296672, 2024.
Article in English | MEDLINE | ID: mdl-38241213

ABSTRACT

Single-cell transcriptomics has the potential to provide novel insights into poorly studied microbial eukaryotes. Although several such technologies are available and benchmarked on mammalian cells, few have been tested on protists. Here, we applied a microarray single-cell sequencing (MASC-seq) technology, that generates microscope images of cells in parallel with capturing their transcriptomes, on three species representing important plankton groups with different cell structures; the ciliate Tetrahymena thermophila, the diatom Phaeodactylum tricornutum, and the dinoflagellate Heterocapsa sp. Both the cell fixation and permeabilization steps were adjusted. For the ciliate and dinoflagellate, the number of transcripts of microarray spots with single cells were significantly higher than for background spots, and the overall expression patterns were correlated with that of bulk RNA, while for the much smaller diatom cells, it was not possible to separate single-cell transcripts from background. The MASC-seq method holds promise for investigating "microbial dark matter", although further optimizations are necessary to increase the signal-to-noise ratio.


Subject(s)
Gene Expression Profiling , Plankton , Animals , Plankton/genetics , Gene Expression Profiling/methods , Transcriptome , Eukaryota , RNA , Mammals
3.
Science ; 382(6675): eadf8486, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060664

ABSTRACT

The spatial distribution of lymphocyte clones within tissues is critical to their development, selection, and expansion. We have developed spatial transcriptomics of variable, diversity, and joining (VDJ) sequences (Spatial VDJ), a method that maps B cell and T cell receptor sequences in human tissue sections. Spatial VDJ captures lymphocyte clones that match canonical B and T cell distributions and amplifies clonal sequences confirmed by orthogonal methods. We found spatial congruency between paired receptor chains, developed a computational framework to predict receptor pairs, and linked the expansion of distinct B cell clones to different tumor-associated gene expression programs. Spatial VDJ delineates B cell clonal diversity and lineage trajectories within their anatomical niche. Thus, Spatial VDJ captures lymphocyte spatial clonal architecture across tissues, providing a platform to harness clonal sequences for therapy.


Subject(s)
B-Lymphocytes , Pre-B Cell Receptors , Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , B-Lymphocytes/metabolism , Clone Cells/metabolism , Gene Expression Profiling/methods , Pre-B Cell Receptors/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/metabolism
4.
Nat Biotechnol ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985875

ABSTRACT

The interactions of microorganisms among themselves and with their multicellular host take place at the microscale, forming complex networks and spatial patterns. Existing technology does not allow the simultaneous investigation of spatial interactions between a host and the multitude of its colonizing microorganisms, which limits our understanding of host-microorganism interactions within a plant or animal tissue. Here we present spatial metatranscriptomics (SmT), a sequencing-based approach that leverages 16S/18S/ITS/poly-d(T) multimodal arrays for simultaneous host transcriptome- and microbiome-wide characterization of tissues at 55-µm resolution. We showcase SmT in outdoor-grown Arabidopsis thaliana leaves as a model system, and find tissue-scale bacterial and fungal hotspots. By network analysis, we study inter- and intrakingdom spatial interactions among microorganisms, as well as the host response to microbial hotspots. SmT provides an approach for answering fundamental questions on host-microbiome interplay.

5.
Nat Commun ; 14(1): 6500, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838705

ABSTRACT

Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.


Subject(s)
Communicable Diseases , Parasites , Wolbachia , Animals , Female , Humans , Parasites/genetics , Transcriptome , Anti-Bacterial Agents/metabolism , Gene Expression Profiling , Wolbachia/genetics , Wolbachia/metabolism , Symbiosis/genetics
6.
Nat Commun ; 12(1): 7046, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857782

ABSTRACT

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.


Subject(s)
Genetic Heterogeneity , Liver/metabolism , Transcriptome , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Erythroblasts/cytology , Erythroblasts/metabolism , Female , Gene Expression Profiling , Gene Ontology , Hepatocytes/cytology , Hepatocytes/metabolism , Kupffer Cells/cytology , Kupffer Cells/metabolism , Liver/cytology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Neutrophils/cytology , Neutrophils/metabolism
7.
BMC Genomics ; 21(1): 298, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293264

ABSTRACT

BACKGROUND: Interest in studying the spatial distribution of gene expression in tissues is rapidly increasing. Spatial Transcriptomics is a novel sequencing-based technology that generates high-throughput information on the distribution, heterogeneity and co-expression of cells in tissues. Unfortunately, manual preparation of high-quality sequencing libraries is time-consuming and subject to technical variability due to human error during manual pipetting, which results in sample swapping and the accidental introduction of batch effects. All these factors complicate the production and interpretation of biological datasets. RESULTS: We have integrated an Agilent Bravo Automated Liquid Handling Platform into the Spatial Transcriptomics workflow. Compared to the previously reported Magnatrix 8000+ automated protocol, this approach increases the number of samples processed per run, reduces sample preparation time by 35%, and minimizes batch effects between samples. The new approach is also shown to be highly accurate and almost completely free from technical variability between prepared samples. CONCLUSIONS: The new automated Spatial Transcriptomics protocol using the Agilent Bravo Automated Liquid Handling Platform rapidly generates high-quality Spatial Transcriptomics libraries. Given the wide use of the Agilent Bravo Automated Liquid Handling Platform in research laboratories and facilities, this will allow many researchers to quickly create robust Spatial Transcriptomics libraries.


Subject(s)
Gene Expression Regulation/genetics , High-Throughput Nucleotide Sequencing/methods , Transcriptome , Animals , Automation , Computational Biology , Gene Library , High-Throughput Nucleotide Sequencing/instrumentation , Mice , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Robotics
8.
Virus Genes ; 56(2): 236-248, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31900852

ABSTRACT

The common glow-worms (Lampyris noctiluca) are best known for emission of green light by their larvae and sexually active adult females. However, both their DNA and RNA viruses remain unknown. Glow-worms are virologically interesting, as they are non-social and do not feed as adults, and hence their viral transmission may be limited. We identified viral sequences from 11 different virus taxa by the RNA-sequencing of two Finnish populations of adult glow-worms. The viruses represent nine different virus families and have negative, positive, or double-stranded RNA genomes. We also found a complete retroviral genome. Similar viral sequences were found from the sequencing data of common eastern firefly of North America, a species belonging to the same family (Lampyridae) as that of the common glow-worm. On average, an individual glow-worm had seven different RNA virus types and most of them appeared to establish a stable infection since they were found from glow-worms during two consecutive years. Here we present the characterization of load, prevalence, and interactions for each virus. Most of the glow-worm RNA viruses seem to be transmitted vertically, which may reflect the biology of glow-worms as non-social capital breeders, i.e., they invest stored resources in reproduction.


Subject(s)
Fireflies/virology , Phylogeny , RNA Viruses/genetics , RNA, Viral/genetics , Animals , Female , Genome, Viral/genetics , North America , RNA Viruses/isolation & purification , Sequence Analysis, RNA
9.
Science ; 364(6435): 89-93, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30948552

ABSTRACT

Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Gene Expression , Motor Neurons/metabolism , Spinal Cord/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Microglia/metabolism , Microglia/pathology , Motor Neurons/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Neuroglia/metabolism , Neuroglia/pathology , Postmortem Changes , Spatio-Temporal Analysis , Spinal Cord/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL