Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561023

ABSTRACT

CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of AML blasts, making it an attractive target for therapy of acute myeloid leukemia (AML). While previous CD33-targeting antibody-drug conjugates (ADCs) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novel ADC with improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linker-payloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated anti-tumor activity at single dose as low as 300 µg/kg in mice, while maintaining tolerability at single dose of 20 - 30 mg/kg in rats. In contrast to both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.

2.
Mol Cancer Ther ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324296

ABSTRACT

PURPOSE: Antibody-drug conjugates (ADCs) have shown impressive clinical activity with approval of many agents in hematological and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic MMAE prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. EXPERIMENTAL DESIGN: Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo anti-tumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). RESULTS: The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared to a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of 8 and 4 respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAU DAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. CONCLUSIONS: The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in non-human primates, leading to a superior preclinical therapeutic window. The data supports potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.

3.
Nutrients ; 12(7)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640639

ABSTRACT

Commensal gut microbiota and probiotics have numerous effects on the host's metabolic and protective systems, which occur primarily through the intestinal epithelial cell interface. Prebiotics, like galacto-oligosaccharides (GOS) are widely used to modulate their function and abundance. However, important structure-function relations may exist, requiring a detailed structural characterization. Here, we detailed the structural characterization of bovine whey derived oligosaccharide preparations enriched with GOS or not, dubbed GOS-enriched milk oligosaccharides (GMOS) or MOS, respectively. We explore GMOS's and MOS's potential to improve intestinal epithelial barrier function, assessed in a model based on barrier disruptive effects of the Clostridioides difficile toxin A. GMOS and MOS contain mainly GOS species composed of ß1-6- and ß1-3-linked galactoses, and 3'- and 6'-sialyllactose. Both GMOS and MOS, combined with lactobacilli, like Lactobacillus rhamnosus (LPR, NCC4007), gave synergistic epithelial barrier protection, while no such effect was observed with Bifidobacterium longum (BL NCC3001), Escherichia coli (Nissle) or fructo-oligosaccharides. Mechanistically, for barrier protection with MOS, (i) viable LPR was required, (ii) acidification of growth medium was not enough, (iii) LPR did not directly neutralize toxin A, and (iv) physical proximity of LPR with the intestinal epithelial cells was necessary. This is the first study, highlighting the importance of structure-function specificity and the necessity of the simultaneous presence of prebiotic, probiotic and host cell interactions required for a biological effect.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Oligosaccharides , Synbiotics , Whey , Animals , Bacterial Toxins/adverse effects , Cattle , Cell Line, Tumor , Enterotoxins/adverse effects , Galactose/chemistry , Galactose/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lactobacillus/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Prebiotics , Probiotics/pharmacology , Protective Agents/chemistry , Protective Agents/metabolism , Protective Agents/pharmacology
4.
Antibodies (Basel) ; 7(2)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-31544867

ABSTRACT

Antibody-drug conjugates (ADCs) offer a combination of antibody therapy and specific delivery of potent small-molecule payloads to target cells. The properties of the ADC molecule are determined by the balance of its components. The efficacy of the payload component increases with higher drug-to-antibody ratio (DAR), while homogeneous DAR = 8 ADCs are easily prepared by conjugation to the four accessible antibody hinge cystines. However, use of hydrophobic payloads has permitted only DAR = 2-4, due to poor pharmacokinetics and aggregation problems. Here, we describe generation and characterization of homogeneous DAR = 8 ADCs carrying a novel auristatin ß-D-glucuronide, MMAU. The glycoside payload contributed to overall hydrophilicity of the ADC reducing aggregation. Compared to standard DAR = 2-4 ADCs, cytotoxicity of the homogeneous DAR = 8 ADCs was improved to low-picomolar IC50 values against cancer cells in vitro. Bystander efficacy was restored after ADC internalization and subsequent cleavage of the glycoside, although unconjugated MMAU was relatively non-toxic to cells. DAR = 8 MMAU ADCs were effective against target antigen-expressing xenograft tumors. The ADCs were also studied in 3D in vitro patient-derived xenograft (PDX) assays where they outperformed clinically used ADC. In conclusion, increased hydrophilicity of the payload contributed to the ADC's hydrophilicity, stability and safety to non-target cells, while significantly improving cytotoxicity and enabling bystander efficacy.

5.
ChemMedChem ; 11(22): 2501-2505, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27786414

ABSTRACT

Antibody-drug conjugates (ADCs) are promising alternatives to naked antibodies for selective drug-delivery applications and treatment of diseases such as cancer. Construction of ADCs relies upon site-selective, efficient and mild conjugation technologies. The choice of a chemical linker is especially important, as it affects the overall properties of the ADC. We envisioned that hydrophilic bifunctional chemical linkers based on carbohydrates would be a useful class of derivatization agents for the construction of linker-drug conjugates and ADCs. Herein we describe the synthesis of carbohydrate-based derivatization agents, glycolinker-drug conjugates featuring the tubulin inhibitor monomethyl auristatin E and an ADC based on an anti-EGFR antibody. In addition, an initial in vitro cytotoxicity evaluation of the individual components and the ADC is provided against EGFR-positive cancer cells.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Oligopeptides/pharmacology , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Immunoconjugates/chemistry , Molecular Conformation , Oligopeptides/chemistry , Structure-Activity Relationship
6.
Microb Cell Fact ; 15(1): 104, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27287473

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei has tremendous capability to secrete over 100 g/L of proteins and therefore it would make an excellent host system for production of high levels of therapeutic proteins at low cost. We have developed T. reesei strains suitable for production of therapeutic proteins by reducing the secreted protease activity. Protease activity has been the major hindrance to achieving high production levels. We have constructed a series of interferon alpha-2b (IFNα-2b) production strains with 9 protease deletions to gain knowledge for further strain development. RESULTS: We have identified two protease deletions that dramatically improved the production levels. Deletion of the subtilisin protease slp7 and the metalloprotease amp2 has enabled production levels of IFNα-2b up to 2.1 and 2.4 g/L, respectively. With addition of soybean trypsin protease inhibitor the level of production improved to 4.5 g/L, with an additional 1.8 g/L still bound to the secretion carrier protein. CONCLUSIONS: High levels of IFNα-2b were produced using T. reesei strains with reduced protease secretion. Further strain development can be done to improve the production system by reducing protease activity and improving carrier protein cleavage.


Subject(s)
Interferon-alpha/biosynthesis , Recombinant Proteins/biosynthesis , Trichoderma/metabolism , Bioreactors , Interferon alpha-2 , Interferon-alpha/economics , Interferon-alpha/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Recombinant Proteins/economics , Recombinant Proteins/genetics , Trichoderma/genetics , Trichoderma/growth & development , Trypsin Inhibitors/metabolism
7.
PLoS One ; 10(8): e0134723, 2015.
Article in English | MEDLINE | ID: mdl-26309247

ABSTRACT

The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant.


Subject(s)
Biological Products/economics , Biological Products/metabolism , Gene Deletion , Genetic Engineering/methods , Peptide Hydrolases/metabolism , Trichoderma/enzymology , Trichoderma/genetics , Humans , Immunoglobulin G/metabolism , Peptide Hydrolases/deficiency , Peptide Hydrolases/genetics , Protease Inhibitors/pharmacology , Proteolysis , Trichoderma/metabolism
8.
Mol Cell Proteomics ; 14(2): 277-88, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452313

ABSTRACT

All human cells are covered by glycans, the carbohydrate units of glycoproteins, glycolipids, and proteoglycans. Most glycans are localized to cell surfaces and participate in events essential for cell viability and function. Glycosylation evolves during carcinogenesis, and therefore carcinoma-related glycan structures are potential cancer biomarkers. Colorectal cancer is one of the world's three most common cancers, and its incidence is rising. Novel biomarkers are essential to identify patients for targeted and individualized therapy. We compared the N-glycan profiles of five rectal adenomas and 18 rectal carcinomas of different stages by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Paraffin-embedded tumor samples were deparaffinized, and glycans were enzymatically released and purified. We found differences in glycosylation between adenomas and carcinomas: monoantennary, sialylated, pauci-mannose, and small high-mannose N-glycan structures were more common in carcinomas than in adenomas. We also found differences between stage I-II and stage III carcinomas. Based on these findings, we selected two glycan structures: pauci-mannose and sialyl Lewis a, for immunohistochemical analysis of their tissue expression in 220 colorectal cancer patients. In colorectal cancer, poor prognosis correlated with elevated expression of sialyl Lewis a, and in advanced colorectal cancer, poor prognosis correlated with elevated expression of pauci-mannose. In conclusion, by mass spectrometry we found several carcinoma related glycans, and we demonstrate a method of transforming these results into immunohistochemistry, a readily applicable method to study biomarker expression in patient samples.


Subject(s)
Adenoma/metabolism , Carcinoma/metabolism , Glycomics/methods , Rectal Neoplasms/metabolism , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Asparagine/metabolism , CA-19-9 Antigen , Carcinoma/pathology , Colorectal Neoplasms/metabolism , Disease Progression , Female , Glycosylation , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Staging , Oligosaccharides/metabolism , Polysaccharides/metabolism , Principal Component Analysis , Rectal Neoplasms/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Survival Analysis
9.
Stem Cells Dev ; 22(5): 707-16, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23106381

ABSTRACT

Lectins are carbohydrate-binding proteins, which occur ubiquitously in nature and are abundant in all living organisms from bacteria to mammals. They have several biological functions among which cell adhesion is well known and characterized. Based on the characterization of the glycome of human embryonic stem cells (hESCs), we have investigated the properties of glycan-binding lectins as a novel class of culture support matrices supporting hESC culture. We report that an Erythrina cristagalli lectin (agglutinin) (ECA) matrix supported the undifferentiated growth and significantly increased the plating efficiency of both hESC and human induced pluripotent stem cells when used in conjunction with pinacidil, an antihypertensive drug with ROCK inhibition activity. As a matrix, ECA maintained pluripotency, robust proliferation with a normal karyotype, and the ability to differentiate both in vitro and in vivo. Therefore, our findings indicate that lectins are potential candidates for design of culture and differentiation methods, and that ECA is a potent simple defined matrix for human pluripotent stem cells.


Subject(s)
Embryonic Stem Cells/cytology , Erythrina , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Plant Lectins , Pluripotent Stem Cells/cytology , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Embryonic Stem Cells/metabolism , Hemagglutinins , Humans , Pinacidil/pharmacology , rho-Associated Kinases/antagonists & inhibitors
10.
Stem Cells Dev ; 21(3): 455-64, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-21933024

ABSTRACT

Multipotent mesenchymal stem cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. However, there is a lack of methods to quickly and efficiently isolate, characterize, and ex vivo expand desired cell populations for therapeutic purposes. Single markers to identify cell populations have not been characterized; instead, all characterizations rely on panels of functional and phenotypical properties. Glycan epitopes can be used for identifying and isolating specific cell types from heterogeneous populations, on the basis of their cell-type specific expression and prominent cell surface localization. We have now studied in detail the cell surface expression of the blood group i epitope (linear poly-N-acetyllactosamine chain) in umbilical cord blood (UCB)-derived MSCs. We used flow cytometry and mass spectrometric glycan analysis and discovered that linear poly-N-acetyllactosamine structures are expressed in UCB-derived MSCs, but not in cells differentiated from them. We further verified the findings by mass spectrometric glycan analysis. Gene expression analysis indicated that the stem-cell specific expression of the i antigen is determined by ß3-N-acetylglucosaminyltransferase 5. The i antigen is a ligand for the galectin family of soluble lectins. We found concomitant cell surface expression of galectin-3, which has been reported to mediate the immunosuppressive effects exerted by MSCs. The i antigen may serve as an endogenous ligand for this immunosuppressive agent in the MSC microenvironment. Based on these findings, we suggest that linear poly-N-acetyllactosamine could be used as a novel UCB-MSC marker either alone or within an array of MSC markers.


Subject(s)
Fetal Blood/cytology , Galectin 3/metabolism , I Blood-Group System/metabolism , Mesenchymal Stem Cells/cytology , Amino Sugars/metabolism , Biomarkers/analysis , Cell Differentiation , Epitopes/chemistry , Fetal Blood/metabolism , Flow Cytometry , Galectin 3/genetics , Gene Expression Profiling , Humans , Ligands , Mass Spectrometry , Mesenchymal Stem Cells/metabolism , N-Acetylglucosaminyltransferases/genetics , Stem Cell Niche
11.
Stem Cells ; 28(2): 258-67, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19890979

ABSTRACT

Human stem cells contain substantial amounts of the xenoantigen N-glycolylneuraminic acid (Neu5Gc), although the levels of Neu5Gc are low or undetectable in human body fluids and most other human tissues. The lack of Neu5Gc in human tissues has been previously explained by the loss of hydroxylase activity of the human CMP-N-acetylneuraminic acid hydroxylase (CMAH) protein caused by a genetic error in the human Cmah gene. We thus wanted to investigate whether the human redundant Cmah gene could still function in stem cell-specific processes. In this study, we show that CMAH gene expression is significantly upregulated in the adult stem cell populations studied, both of hematopoietic and mesenchymal origin, and identify CMAH as a novel stem cell marker. The CMAH content co-occurs with higher levels of Neu5Gc within stem cells as measured by mass spectrometric profiling. It seems that despite being enzymatically inactive, human CMAH may upregulate the Neu5Gc content of cells by enhancing Neu5Gc uptake from exogenous sources. Furthermore, exposure to exogenous Neu5Gc caused rapid phosphorylation of beta-catenin in both CMAH overexpressing cells and bone marrow-derived mesenchymal stem cells, thereby inactivating Wnt/beta-catenin signaling. The data demonstrate the first molecular evidence for xenoantigen Neu5Gc-induced alteration of crucial stem cell-specific signaling systems for the maintenance of self renewal. These results add further emphasis to the crucial need for completely xenofree culturing conditions for human stem cells.


Subject(s)
Mixed Function Oxygenases/metabolism , Stem Cells/metabolism , Blotting, Western , Cell Line , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Humans , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Neuraminic Acids/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sialic Acids/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Cancer Res ; 69(14): 5811-9, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19584298

ABSTRACT

The cell surface is covered by a dense layer of protein- and lipid-linked glycans. Although it has been known that distinct glycan structures are associated with cancer, the whole spectrum of cancer-associated glycans has remained undiscovered. In the present study, we analyzed the protein-linked cancer glycome by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric glycan profiling of cancer patient tissue samples. In lung cancer, we detected accumulation of a novel group of tumor-associated glycans. These protein-linked glycans carried abnormal nonreducing terminal beta-N-acetyl-D-glucosamine (GlcNAc) residues. A similar phenomenon was also detected in structural analyses of tumor-derived glycosphingolipids. This showed that glycan biosynthesis may dramatically change in cancer and that direct glycome analysis can detect the resulting marker glycans. Based on the structural knowledge, we further devised a covalent labeling technique for the detection of GlcNAc-expressing tumors with a specific transferase enzyme. In normal tissues, terminal GlcNAc antigens are capped by galactosylation. Similarly to common cancer-associated glycan antigens T, Tn, and sialyl-Tn, the newly discovered GlcNAc antigens result from incomplete glycosylation. In conclusion, the identified terminal GlcNAc glycans should be recognized as a novel class of tumor markers.


Subject(s)
Acetylglucosamine/metabolism , Glycoproteins/metabolism , Neoplasms/metabolism , Polysaccharides/metabolism , Acetylglucosamine/analysis , Galactosyltransferases/metabolism , Glycoproteins/analysis , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasms/immunology , Neoplasms/pathology , Polysaccharides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
13.
BMC Cell Biol ; 10: 42, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19490625

ABSTRACT

BACKGROUND: Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses. RESULTS: The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans. CONCLUSION: The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.


Subject(s)
Embryonic Stem Cells/chemistry , Embryonic Stem Cells/cytology , Glycomics , Polysaccharides/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Cell Differentiation , Down-Regulation , Fucose/chemistry , Humans , Molecular Sequence Data , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Glycoconj J ; 26(3): 367-84, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19037724

ABSTRACT

Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and alpha2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Glycomics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Cell Line , Flow Cytometry , Humans , Mass Spectrometry , Molecular Sequence Data , N-Acetylneuraminic Acid/metabolism , Polysaccharides/chemistry , Protein Binding , Reproducibility of Results
15.
FEBS J ; 275(2): 289-301, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18076654

ABSTRACT

Trypsinogen-1 and -2 are well-characterized enzymes that are expressed in the pancreas and also in several other tissues. Many cancers produce trypsinogen isoenzymes that differ from the pancreatic ones with respect to substrate specificity and isoelectric point. These tumor-associated trypsinogens play a pivotal role in cancer progression and metastasis. The differences between these and the pancreatic isoenzymes have been suggested to be caused by post-translational modification, either sulfation or phosphorylation of a tyrosine residue. We aimed to elucidate the cause of these differences. We isolated trypsinogens from pancreatic juice and conditioned medium from a colon carcinoma cell line. Intact proteins, and tryptic and chymotryptic peptides were characterized by electrospray ionization mass spectrometry. We also used immunoblotting with antibody against phosphotyrosine and N-terminal sequencing. The results show that pancreatic trypsinogen-1 and -2 are sulfated at Tyr154, whereas tumor-associated trypsinogen-2 is not. Detachment of a labile sulfogroup could be demonstrated by both in-source dissociation and low-energy collision-induced dissociation in a tandem mass spectrometer. Tyrosine sulfation is an ubiquitous protein modification occurring in the secretory pathway, but its significance is often underestimated due to difficulties in its analysis. Sulfation is an almost irreversible modification that is thought to regulate protein-protein interactions and the activity of proteolytic enzymes. We conclude that the previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are probably caused by sulfation of Tyr154 in pancreatic trypsinogens.


Subject(s)
Neoplasms/metabolism , Pancreas/enzymology , Sulfates/metabolism , Trypsinogen/metabolism , Tyrosine/metabolism , Alkylation , Amino Acid Sequence , Cell Line, Tumor , Humans , Molecular Sequence Data , Neoplasms/pathology , Phosphorylation , Spectrometry, Mass, Electrospray Ionization , Trypsinogen/chemistry
16.
Exp Hematol ; 35(8): 1279-92, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17662891

ABSTRACT

OBJECTIVE: Cell surface glycans contribute to the adhesion capacity of cells and are essential in cellular signal transduction. Yet, the glycosylation of hematopoietic stem and progenitor cells (HSPC), such as CD133+ cells, is poorly explored. MATERIALS AND METHODS: N-glycan structures of cord blood-derived CD133+ and CD133- cells were analyzed with mass spectrometric profiling and exoglycosidase digestion, cell surface glycan epitopes with lectin binding assay, and expression of N-glycan biosynthesis-related genes with microarray analysis. RESULTS: Over 10% difference was demonstrated in the N-glycan profiles of CD133+ and CD133- cells. Biantennary complex-type N-glycans were enriched in CD133+ cells. Of the genes regulating the synthesis of these structures, CD133+ cells overexpressed MGAT2 and underexpressed MGAT4. Moreover, the amount of high-mannose type N-glycans and terminal alpha2,3-sialylation was increased in CD133+ cells. Elevated alpha2,3-sialylation was supported by the overexpression of ST3GAL6. CONCLUSION: Our work presents new information on the characters of HSPCs. The new knowledge of HSPC-specific N-glycosylation advances their identification and provides tools to promote HSPC homing and mobilization or targeting to specific tissues.


Subject(s)
Antigens, CD/genetics , Gene Expression Regulation , Glycoproteins/genetics , Hematopoietic Stem Cells/physiology , Peptides/genetics , Polysaccharides/chemistry , Stem Cells/physiology , AC133 Antigen , Antigens, CD/biosynthesis , Glycoproteins/biosynthesis , Glycoproteins/deficiency , Glycosylation , Humans , Infant, Newborn , Kinetics , Oligonucleotide Array Sequence Analysis , Peptides/deficiency
17.
Stem Cells ; 25(1): 197-202, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17008421

ABSTRACT

Human embryonic and mesenchymal stem cell therapies may offer significant benefit to a large number of patients. Recently, however, human embryonic stem cell lines cultured on mouse feeder cells were reported to be contaminated by the xeno-carbohydrate N-glycolylneuraminic acid (Neu5Gc) and considered potentially unfit for human therapy. To determine the extent of the problem of Neu5Gc contamination for the development of stem cell therapies, we investigated whether it also occurs in cells cultured on human feeder cells and in mesenchymal stem cells, what are the sources of contamination, and whether the contamination is reversible. We found that N-glycolylneuraminic acid was present in embryonic stem cells cultured on human feeder cells, correlating with the presence of Neu5Gc in components of the commercial serum replacement culture medium. Similar contamination occurred in mesenchymal stem cells cultured in the presence of fetal bovine serum. The results suggest that the Neu5Gc is present in both glycoprotein and lipid-linked glycans, as detected by mass spectrometric analysis and monoclonal antibody staining, respectively. Significantly, the contamination was largely reversible in the progeny of both cell types, suggesting that decontaminated cells may be derived from existing stem cell lines. Although major complications have not been reported in the clinical trials with mesenchymal stem cells exposed to fetal bovine serum, the immunogenic contamination may potentially be reflected in the viability and efficacy of the transplanted cells and thus bias the published results. Definition of safe culture conditions for stem cells is essential for future development of cellular therapies.


Subject(s)
Antigens, Heterophile/pharmacology , Embryonic Stem Cells/physiology , Mesenchymal Stem Cells/physiology , Neuraminic Acids/immunology , Neuraminic Acids/pharmacology , Antibodies/pharmacology , Antibody Specificity , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Flow Cytometry , Homeostasis , Humans , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Phenotype , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...