Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958492

ABSTRACT

Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients (19 women and 12 men) with severe AS undergoing elective aortic valve replacement. The subjects were clinically evaluated, and transthoracic echocardiography was performed pre-surgery. LV septal biopsies were obtained to assess fibrosis and apoptosis and fat deposition in myocytes (perilipin 5 (PLIN5)), or in the form of adipocytes within the heart (perilipin 1 (PLIN1)), the presence of ceramides and myostatin were assessed via immunohistochemistry. After BMI adjustment, we found a positive association between fibrosis and apoptotic cardiomyocytes, as well as fibrosis and the area covered by PLIN5. Apoptosis and PLIN5 were also significantly interrelated. LV fibrosis increased with a higher medium gradient (MG) and peak gradient (PG). Ceramides and myostatin levels were higher in patients within the higher MG and PG tertiles. In the linear regression analysis, increased fibrosis correlated with increased apoptosis and myostatin, independent from confounding factors. After adjustment for age and BMI, we found a positive relationship between PLIN5 and E/A and a negative correlation between septal S', global longitudinal strain (GLS), and fibrosis. Myostatin was inversely correlated with GLS and ejection fraction. Fibrosis and myocardial steatosis altogether contribute to ventricular dysfunction in severe AS. The association of myostatin and fibrosis with systolic dysfunction, as well as between myocardial steatosis and diastolic dysfunction, highlights potential therapeutic targets.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Male , Humans , Female , Ventricular Function, Left , Ceramides , Myostatin , Aortic Valve Stenosis/surgery , Fibrosis , Aortic Valve/pathology , Stroke Volume
2.
Exp Gerontol ; 179: 112233, 2023 08.
Article in English | MEDLINE | ID: mdl-37321332

ABSTRACT

Recently, there has been a growing body of evidence showing a negative effect of the white adipose tissue (WAT) dysfunction on the skeletal muscle function and quality. However, little is known about the effects of senescent adipocytes on muscle cells. Therefore, to explore potential mechanisms involved in age-related loss of muscle mass and function, we performed an in vitro experiment using conditioned medium obtained from cultures of mature and aged 3 T3-L1 adipocytes, as well as from cultures of dysfunctional adipocytes exposed to oxidative stress or high insulin doses, to treat C2C12 myocytes. The results from morphological measures indicated a significant decrease in diameter and fusion index of myotubes after treatment with medium of aged or stressed adipocytes. Aged and stressed adipocytes presented different morphological characteristics as well as a different gene expression profile of proinflammatory cytokines and ROS production. In myocytes treated with different adipocytes' conditioned media, we demonstrated a significant reduction of gene expression of myogenic differentiation markers as well as a significant increase of genes involved in atrophy. Finally, a significant reduction in protein synthesis as well as a significant increase of myostatin was found in muscle cells treated with medium of aged or stressed adipocytes compared to controls. In conclusion, these preliminary results suggest that aged adipocytes could influence negatively trophism, function and regenerative capacity of myocytes by a paracrine network of signaling.


Subject(s)
Adipocytes , Cellular Senescence , Muscle Cells , Adipocytes/cytology , Muscle, Skeletal/physiopathology , Animals , Mice , 3T3 Cells , Muscle Cells/pathology , Culture Media, Conditioned/pharmacology , Oxidative Stress , Insulin/adverse effects , Cytokines/metabolism , Reactive Oxygen Species/metabolism , Cell Differentiation , Myostatin/metabolism , Gene Expression
3.
Cells ; 11(21)2022 10 25.
Article in English | MEDLINE | ID: mdl-36359757

ABSTRACT

As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.


Subject(s)
Sarcopenia , Humans , Aged , Sarcopenia/complications , Muscle, Skeletal/pathology , Obesity , Adipocytes/pathology , Muscle Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...