Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 107: 104616, 2021 02.
Article in English | MEDLINE | ID: mdl-33444985

ABSTRACT

A new series of 2-phenylbenzofuran derivatives were designed and synthesized to determine relevant structural features for the MAO inhibitory activity and selectivity. Methoxy substituents were introduced in the 2-phenyl ring, whereas the benzofuran moiety was not substituted or substituted at the positions 5 or 7 with a nitro group. Substitution patterns on both the phenyl ring and the benzofuran moiety determine the affinity for MAO-A or MAO-B. The 2-(3-methoxyphenyl)-5-nitrobenzofuran 9 was the most potent MAO-B inhibitor (IC50 = 0.024 µM) identified in this series, whereas 7-nitro-2-phenylbenzofuran 7 was the most potent MAO-A inhibitor (IC50 = 0.168 µM), both acting as reversible inhibitors. The number and position of the methoxyl groups on the 2-phenyl ring, have an important influence on the inhibitory activity. Molecular docking studies confirmed the experimental results and highlighted the importance of key residues in enzyme inhibition.


Subject(s)
Benzofurans/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/chemistry , Benzofurans/metabolism , Benzofurans/pharmacology , Binding Sites , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...