Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 346: 140586, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939931

ABSTRACT

Paracetamol, a contaminant of emerging concern, has been detected in different bodies of water, where it can impact ecological and human health. To quantify this paracetamol, electroanalytical methods have gained support. Thus, the present study developed a simple, inexpensive, and environmentally friendly method for paracetamol quantification using a carbon fiber microelectrode based on commercial carbon fiber. To improve the carbon fiber microelectrode's paracetamol sensitivity and selectivity, it was subjected to an activation process via electrochemical oxidation in an acid medium (H2SO4 or HNO3), using 20 consecutive cycles of cyclic voltammetry. The treated (activated) carbon fiber microelectrode was characterized using scanning electron microscopy and electrochemical techniques, including chronoamperometry and electrochemical impedance spectroscopy. The H2SO4-activated carbon fiber microelectrode exhibited enhanced figures of merit, with a linear dynamic range of paracetamol detection from 0.5 to 11 µmol L-1 and a limit of detection of 0.21 µmol L-1 under optimized conditions. The method was optimized by quantifying paracetamol in commercial pharmaceutical tablets, spiked running tap water, and river water (Pita River, Quito, Ecuador, latitude -0.364955°, longitude -78.404538°); the respective recovery values were 102.89, 103.93, and 112.40%. The results demonstrated an acceptable level of accuracy and the promising applicability of this carbon fiber microelectrode as a sensor to detect paracetamol.


Subject(s)
Acetaminophen , Charcoal , Humans , Microelectrodes , Carbon Fiber , Water
2.
Front Chem ; 11: 900670, 2023.
Article in English | MEDLINE | ID: mdl-37179778

ABSTRACT

Treating domestic wastewater has become more and more complicated due to the high content of different types of detergents. In this context, advanced electro-oxidation (AEO) has become a powerful tool for complex wastewater remediation. The electrochemical degradation of surfactants present in domestic wastewater was carried out using a DiaClean® cell in a recirculation system equipped with boron-doped diamond (BDD) as the anode and stainless steel as the cathode. The effect of recirculation flow (1.5, 4.0 and 7.0 L min-1) and the applied current density (j = 7, 14, 20, 30, 40, and 50 mA cm-2) was studied. The degradation was followed by the concentration of surfactants, chemical oxygen demand (COD), and turbidity. pH value, conductivity, temperature, sulfates, nitrates, phosphates, and chlorides were also evaluated. Toxicity assays were studied through evaluating Chlorella sp. performance at 0, 3, and 7 h of treatment. Finally, the mineralization was followed by total organic carbon (TOC) under optimal operating conditions. The results showed that applying j = 14 mA cm-2 and a flow rate of 1.5 L min-1 during 7 h of electrolysis were the best conditions for the efficient mineralization of wastewater, achieving the removal of 64.7% of surfactants, 48.7% of COD, 24.9% of turbidity, and 44.9% of mineralization analyzed by the removal of TOC. The toxicity assays showed that Chlorella microalgae were unable to grow in AEO-treated wastewater (cellular density: 0 × 104 cells ml-1 after 3- and 7-h treatments). Finally, the energy consumption was analyzed, and the operating cost of 1.40 USD m-3 was calculated. Therefore, this technology allows for the degradation of complex and stable molecules such as surfactants in real and complex wastewater, if toxicity is not taken into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...