Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 148: 109472, 2024 May.
Article in English | MEDLINE | ID: mdl-38438059

ABSTRACT

The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Gene Expression Profiling/veterinary , Transcriptome , Hepatopancreas/pathology , Necrosis/microbiology , Acute Disease
2.
Front Microbiol ; 13: 871077, 2022.
Article in English | MEDLINE | ID: mdl-35572670

ABSTRACT

The SLC5/STAC histidine kinases comprise a recently identified family of sensor proteins in two-component signal transduction systems (TCSTS), in which the signaling domain is fused to an SLC5 solute symporter domain through a STAC domain. Only two members of this family have been characterized experimentally, the CrbS/R system that regulates acetate utilization in Vibrio and Pseudomonas, and the CbrA/B system that regulates the utilization of histidine in Pseudomonas and glucose in Azotobacter. In an attempt to expand the characterized members of this family beyond the Gammaproteobacteria, we identified two putative TCSTS in the Alphaproteobacterium Sinorhizobium fredii NGR234 whose sensor histidine kinases belong to the SLC5/STAC family. Using reverse genetics, we were able to identify the first TCSTS as a CrbS/R homolog that is also needed for growth on acetate, while the second TCSTS, RpuS/R, is a novel system required for optimal growth on pyruvate. Using RNAseq and transcriptional fusions, we determined that in S. fredii the RpuS/R system upregulates the expression of an operon coding for the pyruvate symporter MctP when pyruvate is the sole carbon source. In addition, we identified a conserved DNA sequence motif in the putative promoter region of the mctP operon that is essential for the RpuR-mediated transcriptional activation of genes under pyruvate-utilizing conditions. Finally, we show that S. fredii mutants lacking these TCSTS are affected in nodulation, producing fewer nodules than the parent strain and at a slower rate.

3.
J Gen Virol ; 103(3)2022 03.
Article in English | MEDLINE | ID: mdl-35259086

ABSTRACT

The vine mealybug, Planococcus ficus (Signoret, 1875), is the most important insect pest in growing areas of the grapevine Vitis vinifera L. in several countries, including Mexico. In Mexico, Baja California (B.C.) is the region with the highest production of V. vinifera L. grapes for industrial purposes. Recently, the diversity of viruses infecting insects only (insect-specific viruses) has been broadly explored to elucidate further ecological viral-host interactions in many insect species, which in some cases has resulted in the application of virus-based biological control agents for insect pests. However, a survey of the Pl. ficus virome has not been done yet. In the present study, we pooled Pl. ficus individuals collected through different vineyards of Ensenada, B.C., Mexico and analysed them by meta-transcriptomics. Novel nearly complete genomes of five RNA viruses were retrieved. These viruses were related to the Iflaviridae and Reoviridae families, and to the Picornavirales and Tolivirales orders. A new isolate belonging to the Dicistroviridae family was also found. Phylogenetic analyses showed that these putative viral genomes group with viruses having hemipteran (including a mealybug species) or other insect hosts, or with viruses associated with insects. Our results suggest that the identified novel RNA viruses could be insect-specific viruses of Pl. ficus. This work is the first insight into the Pl. ficus virome; it guarantees further studies aimed to characterize those viruses with potential for application in biological control of this economically important insect.


Subject(s)
Ficus , Hemiptera , Vitis , Animals , Genome, Viral , Humans , Insecta , Mexico , Phylogeny , RNA, Viral/genetics
4.
Mol Ecol ; 31(2): 546-561, 2022 01.
Article in English | MEDLINE | ID: mdl-34697853

ABSTRACT

Zooplankton plays a pivotal role in sustaining the majority of marine ecosystems. The distribution patterns and diversity of zooplankton provide key information for understanding the functioning of these ecosystems. Nevertheless, due to the numerous cryptic and sibling species and the lack of diagnostic characteristics for early developmental stages, the identification of the global-to-local patterns of zooplankton biodiversity and biogeography remains challenging in different research fields. The spatial and temporal changes in the zooplankton community in the open waters of the southern Gulf of Mexico were assessed using metabarcoding analysis of the V9 region of 18S rRNA and mitochondrial cytochrome oxidase c subunit I (COI). Additionally, a multiscale analysis was implemented to evaluate which environmental predictors may explain the variability in the structure of the zooplankton community. Our findings suggest that the synergistic effects of dissolved oxygen concentration, temperature, and longitude (intended as a proxy for still unidentified predictors) may explain both spatial and temporal zooplankton variability even with low contribution. Furthermore, the zooplankton distribution probably reflects the coexistence of three heterogeneous ecoregions and a bio-physical partitioning of the studied area. Finally, some taxa were either exclusive or predominant with either 18S or COI markers. This may suggest that comprehensive assessments of the zooplankton community may be more accurately met by the use of multilocus approaches.


Subject(s)
Ecosystem , Zooplankton , Animals , Biodiversity , Gulf of Mexico , Oceans and Seas , Water , Zooplankton/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...