Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 57(30): 8971-8977, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30461884

ABSTRACT

In this paper, we propose a graphene-covered subwavelength metallic grating where the Fermi level of graphene is sinusoidally modulated as a leaky-wave antenna at terahertz frequencies. This structure can convert spoof surface plasmon guided waves to free-space radiation due to the tunability of graphene. Analysis and design of the proposed leaky-wave antenna are discussed based on sinusoidally modulated surface impedance. The surface impedance is obtained by an analytical circuit model. The sinusoidal surface impedance is realized using modulation of the conductivity of graphene by applying a bias voltage. The proposed leaky-wave antenna is capable of electronic beam scanning with an almost constant gain and low sidelobe level by tuning the graphene Fermi level. In addition, a mode-converting section is proposed that drastically improves the return loss of the antenna.

2.
Opt Lett ; 42(23): 4808-4811, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216116

ABSTRACT

We propose a bidirectional terahertz (THz) spectrum splitter using a practically simple metamaterial structure consisting of rectangular grooves covered by graphene. Thanks to the graphene optoelectronic tunability and by adjusting the grooves width, this structure provides nearly 2π phase shift. At the same time, the reflection efficiency is acceptable throughout the phase shifts. We design each of the meta-atoms using a circuit model, and then we synthesize the final supercell based on the generalized Snell's law so that the structure reflects different frequency waves to totally different directions. The full-wave simulations demonstrate the beam splitting with a remarkable efficiency of around 80%.

SELECTION OF CITATIONS
SEARCH DETAIL
...