Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Lipid Res ; : 100587, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950680

ABSTRACT

Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited lipid droplet biogenesis, content and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation and dysfunction, as well as ER stress. These changes coincided with upregulation of proapoptotic ceramides, but were independent of lipid peroxidation rate. Also in human EndoC-ßH1 beta-cells suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size, and influences beta-cell sensitivity to FFA.

2.
Oncogene ; 43(16): 1203-1213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413795

ABSTRACT

Neuroblastoma is the most common extracranial malignant tumor of childhood, accounting for 15% of all pediatric cancer deaths. Despite significant advances in our understanding of neuroblastoma biology, five-year survival rates for high-risk disease remain less than 50%, highlighting the importance of identifying novel therapeutic targets to combat the disease. MYCN amplification is the most frequent and predictive molecular aberration correlating with poor outcome in neuroblastoma. N-Myc is a short-lived protein primarily due to its rapid proteasomal degradation, a potentially exploitable vulnerability in neuroblastoma. AF1q is an oncoprotein with established roles in leukemia and solid tumor progression. It is normally expressed in brain and sympathetic neurons and has been postulated to play a part in neural differentiation. However, no role for AF1q in tumors of neural origin has been reported. In this study, we found AF1q to be a universal marker of neuroblastoma tumors. Silencing AF1q in neuroblastoma cells caused proteasomal degradation of N-Myc through Ras/ERK and AKT/GSK3ß pathways, activated p53 and blocked cell cycle progression, culminating in cell death via the intrinsic apoptotic pathway. Moreover, silencing AF1q attenuated neuroblastoma tumorigenicity in vivo signifying AF1q's importance in neuroblastoma oncogenesis. Our findings reveal AF1q to be a novel regulator of N-Myc and potential therapeutic target in neuroblastoma.


Subject(s)
Neuroblastoma , Child , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Oncogene Proteins/metabolism , Cell Transformation, Neoplastic , Transcription Factors/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
J Pathol ; 263(1): 22-31, 2024 05.
Article in English | MEDLINE | ID: mdl-38332723

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Dependovirus , Idiopathic Pulmonary Fibrosis , Lysophospholipids , Sphingosine/analogs & derivatives , Humans , Mice , Animals , Dependovirus/genetics , Lung/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin , Models, Animal , Genetic Therapy , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism
4.
Sci Rep ; 13(1): 22692, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123809

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by respiratory failure due to a vicious cycle of defective Cystic Fibrosis Transmembrane conductance Regulator (CFTR) function, chronic inflammation and recurrent bacterial and fungal infections. Although the recent introduction of CFTR correctors/potentiators has revolutionized the clinical management of CF patients, resurgence of inflammation and persistence of pathogens still posit a major concern and should be targeted contextually. On the background of a network-based selectivity that allows to target the same enzyme in the host and microbes with different outcomes, we focused on sphingosine-1-phosphate (S1P) lyase (SPL) of the sphingolipid metabolism as a potential candidate to uniquely induce anti-inflammatory and antifungal activities in CF. As a feasibility study, herein we show that interfering with S1P metabolism improved the immune response in a murine model of CF with aspergillosis while preventing germination of Aspergillus fumigatus conidia. In addition, in an early drug discovery process, we purified human and A. fumigatus SPL, characterized their biochemical and structural properties, and performed an in silico screening to identify potential dual species SPL inhibitors. We identified two hits behaving as competitive inhibitors of pathogen and host SPL, thus paving the way for hit-to-lead and translational studies for the development of drug candidates capable of restraining fungal growth and increasing antifungal resistance.


Subject(s)
Cystic Fibrosis , Humans , Animals , Mice , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Feasibility Studies , Inflammation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958544

ABSTRACT

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.


Subject(s)
Genetic Therapy , Parvovirinae , Sphingosine , Animals , Humans , Mice , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Lysophospholipids/metabolism , Mice, Knockout , Parvovirinae/metabolism , Phosphates , Sphingosine/metabolism
6.
World J Pediatr ; 19(5): 425-437, 2023 May.
Article in English | MEDLINE | ID: mdl-36371483

ABSTRACT

BACKGROUND: Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) or nephrotic syndrome type-14 is caused by biallelic mutations in SGPL1. Here, we conducted a systematic review to delineate the characteristics of SPLIS patients. METHODS: A literature search was performed in PubMed, Web of Science, and Scopus databases, and eligible studies were included. For all patients, demographic, clinical, laboratory, and molecular data were collected and analyzed. RESULTS: Fifty-five SPLIS patients (54.9% male, 45.1% female) were identified in 19 articles. Parental consanguinity and positive family history were reported in 70.9% and 52.7% of patients, respectively. Most patients (54.9%) primarily manifested within the first year of life, nearly half of whom survived, while all patients with a prenatal diagnosis of SPLIS (27.5%) died at a median [interquartile (IQR)] age of 2 (1.4-5.3) months (P = 0.003). The most prevalent clinical feature was endocrinopathies, including primary adrenal insufficiency (PAI) (71.2%) and hypothyroidism (32.7%). Kidney disorders (42, 80.8%) were mainly in the form of steroid-resistant nephrotic syndrome (SRNS) and progressed to end-stage kidney disease (ESKD) in 19 (36.5%) patients at a median (IQR) age of 6 (1.4-42.6) months. Among 30 different mutations in SGPL1, the most common was c.665G > A (p.Arg222Gln) in 11 (20%) patients. Twenty-six (49.1%) patients with available outcome were deceased at a median (IQR) age of 5 (1.5-30.5) months, mostly following ESKD (23%) or sepsis/septic shock (23%). CONCLUSION: In patients with PAI and/or SRNS, SGPL1 should be added to diagnostic genetic panels, which can provide an earlier diagnosis of SPLIS and prevention of ESKD and other life-threatening complications.


Subject(s)
Kidney Failure, Chronic , Lyases , Nephrotic Syndrome , Humans , Male , Female , Infant , Sphingosine , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/epidemiology , Nephrotic Syndrome/genetics , Mutation , Phosphates , Lyases/genetics
7.
Front Cell Neurosci ; 16: 938693, 2022.
Article in English | MEDLINE | ID: mdl-36187293

ABSTRACT

In 2017, an inborn error of metabolism caused by recessive mutations in SGPL1 was discovered. The disease features steroid-resistant nephrotic syndrome, adrenal insufficiency, and neurological defects. The latter can include sensorineural hearing loss, cranial nerve defects, peripheral neuropathy, abnormal brain development, seizures and/or neurodegeneration. SGPL1 encodes the pyridoxal-5'-phosphate (PLP) dependent enzyme sphingosine phosphate lyase (SPL), and the condition is now referred to as SPL insufficiency syndrome (SPLIS). SPL catalyzes the final step in the degradative pathway of sphingolipids in which the bioactive sphingolipid sphingosine-1-phosphate (S1P) is irreversibly degraded to a long chain aldehyde and phosphoethanolamine (PE). SPL guards the only exit point for sphingolipid metabolism, and its inactivation leads to accumulation of various types of sphingolipids which have biophysical roles in plasma membrane rafts and myelin, and signaling roles in cell cycle progression, vesicular trafficking, cell migration, and programmed cell death. In addition, the products of the SPL reaction have biological functions including regulation of autophagic flux, which is important in axonal and neuronal integrity. In this review, the neurological manifestations of SPLIS will be described, and insights regarding the neurological consequences of SPL insufficiency from the study of brain-specific SPL knockout mice and Drosophila SPL mutants will be summarized.

8.
Int J Mol Sci ; 23(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35886926

ABSTRACT

Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.


Subject(s)
Aldehyde-Lyases , Muscular Dystrophy, Duchenne , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Animals , Disease Models, Animal , Dystrophin/genetics , Humans , Inflammation/pathology , Mice , Mice, Inbred mdx , Mice, SCID , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Sphingosine/metabolism
9.
DNA Cell Biol ; 41(4): 331-335, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35325556

ABSTRACT

Sphingosine 1-phosphate lyase (SPL) is a critical component of sphingosine 1-phosphate (S1P) metabolism. SPL has been associated with several crucial cellular functions due to its role in S1P metabolism, but its role in viral infections is poorly understood. Studies show that SPL has an antiviral function against influenza A virus (IAV) by interacting with IKKɛ, promoting the type I interferon (IFN) innate immune response to IAV infection. However, a more recent study has revealed that IAV NS1 protein hampers this by triggering ubiquitination and subsequent degradation of SPL, which reduces the type I IFN innate immune response. In this study, we describe SPL, the type I IFN response, and known interactions between SPL and IAV.


Subject(s)
Influenza A virus , Influenza, Human , Host-Pathogen Interactions , Humans , Immunity, Innate , Lysophospholipids , Sphingosine/analogs & derivatives
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638955

ABSTRACT

Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5-2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.


Subject(s)
Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Bile/metabolism , Liver/metabolism , Sphingolipids/blood , Animals , Cells, Cultured , Ceramides/metabolism , Cholesterol, LDL/metabolism , Gene Knockout Techniques , Hepatocytes/metabolism , Homeostasis/genetics , Lysophospholipids/metabolism , Mice , Mice, Knockout , Phenotype , Receptors, LDL/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism
11.
Cell Biochem Biophys ; 79(3): 547-559, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34133011

ABSTRACT

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by a deficiency in sphingosine-1-phosphate lyase (SPL), the final enzyme in the sphingolipid degradative pathway. Inactivating mutations of SGPL1-the gene encoding SPL-lead to a deficiency of its downstream products, and buildup of sphingolipid intermediates, including its bioactive substrate, sphingosine-1-phosphate (S1P), the latter causing lymphopenia, a hallmark of the disease. Other manifestations of SPLIS include nephrotic syndrome, neuronal defects, and adrenal insufficiency, but their pathogenesis remains unknown. In this report, we describe the correlation between SGPL1 genotypes, age at diagnosis, and patient outcome. Vitamin B6 serves as a cofactor for SPL. B6 supplementation may aid some SPLIS patients by overcoming poor binding kinetics and promoting proper folding and stability of mutant SPL proteins. However, this approach remains limited to patients with a susceptible allele. Gene therapy represents a potential targeted therapy for SPLIS patients harboring B6-unresponsive missense mutations, truncations, deletions, and splice-site mutations. When Sgpl1 knockout (SPLKO) mice that model SPLIS were treated with adeno-associated virus (AAV)-mediated SGPL1 gene therapy, they showed profound improvement in survival and kidney and neurological function compared to untreated SPLKO mice. Thus, gene therapy appears promising as a universal, potentially curative treatment for SPLIS.


Subject(s)
Aldehyde-Lyases
12.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33755599

ABSTRACT

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9-mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.


Subject(s)
Aldehyde-Lyases/genetics , Gene Transfer Techniques , Metabolism, Inborn Errors/genetics , Nephrotic Syndrome/genetics , Neurodevelopmental Disorders/genetics , Anemia/genetics , Anemia/metabolism , Anemia/physiopathology , Animals , Cytokines/metabolism , Dependovirus , Genetic Therapy , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/physiopathology , Inflammation/metabolism , Kidney/metabolism , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/physiopathology , Metabolism, Inborn Errors/therapy , Mice , Mice, Knockout , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/physiopathology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , STAT3 Transcription Factor/metabolism , Signal Transduction , Survival Rate
13.
J Inherit Metab Dis ; 43(5): 1131-1142, 2020 09.
Article in English | MEDLINE | ID: mdl-32233035

ABSTRACT

Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.


Subject(s)
Adrenal Insufficiency/drug therapy , Aldehyde-Lyases/metabolism , Dietary Supplements , Lymphopenia/drug therapy , Nephrosis/drug therapy , Vitamin B 6/administration & dosage , Adrenal Insufficiency/genetics , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/genetics , Biomarkers/metabolism , Fibroblasts/drug effects , Humans , Lymphopenia/genetics , Mutation , Nephrosis/genetics , Phosphates , Syndrome
14.
Invest New Drugs ; 37(6): 1309, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31032525

ABSTRACT

The authors would like to note an omission of disclosure in this paper. Author JDS is cofounder, equity-holder, and consultant of GILTRx Therapeutics.

15.
J Lipid Res ; 60(3): 456-463, 2019 03.
Article in English | MEDLINE | ID: mdl-30635364

ABSTRACT

Sphingosine phosphate lyase (SPL) is the final enzyme in the sphingolipid degradative pathway, catalyzing the irreversible cleavage of long-chain base phosphates (LCBPs) to yield a long-chain aldehyde and ethanolamine phosphate (EP). SPL guards the sole exit point of sphingolipid metabolism. Its inactivation causes product depletion and accumulation of upstream sphingolipid intermediates. The main substrate of the reaction, sphingosine-1-phosphate (S1P), is a bioactive lipid that controls immune-cell trafficking, angiogenesis, cell transformation, and other fundamental processes. The products of the SPL reaction contribute to phospholipid biosynthesis and programmed cell-death activation. The main features of SPL enzyme activity were first described in detail by Stoffel et al. in 1969. The first SPL-encoding gene was cloned from budding yeast in 1997. Reverse and forward genetic strategies led to the rapid identification of other genes in the pathway and their homologs in other species. Genetic manipulation of SPL-encoding genes in model organisms has revealed the contribution of sphingolipid metabolism to development, physiology, and host-pathogen interactions. In 2017, recessive mutations in the human SPL gene SGPL1 were identified as the cause of a novel inborn error of metabolism associated with nephrosis, endocrine defects, immunodeficiency, acanthosis, and neurological problems. We refer to this condition as SPL insufficiency syndrome (SPLIS). Here, we share our perspective on the 50-year history of SPL from discovery to disease, focusing on insights provided by model organisms regarding the pathophysiology of SPLIS and how SPLIS raises the possibility of a hidden role for sphingolipids in other disease conditions.


Subject(s)
Aldehyde-Lyases/metabolism , Disease , Animals , Humans , Phosphates/metabolism
16.
Adv Biol Regul ; 71: 128-140, 2019 01.
Article in English | MEDLINE | ID: mdl-30274713

ABSTRACT

Sphingosine-1-phosphate lyase (SPL) is an intracellular enzyme that controls the final step in the sphingolipid degradative pathway, the only biochemical pathway for removal of sphingolipids. Specifically, SPL catalyzes the cleavage of sphingosine 1-phosphate (S1P) at the C2-3 carbon bond, resulting in its irreversible degradation to phosphoethanolamine (PE) and hexadecenal. The substrate of the reaction, S1P, is a bioactive sphingolipid metabolite that signals through a family of five G protein-coupled S1P receptors (S1PRs) to mediate biological activities including cell migration, cell survival/death/proliferation and cell extrusion, thereby contributing to development, physiological functions and - when improperly regulated - the pathophysiology of disease. In 2017, several groups including ours reported a novel childhood syndrome that featured a wide range of presentations including fetal hydrops, steroid-resistant nephrotic syndrome (SRNS), primary adrenal insufficiency (PAI), rapid or insidious neurological deterioration, immunodeficiency, acanthosis and endocrine abnormalities. In all cases, the disease was attributed to recessive mutations in the human SPL gene, SGPL1. We now refer to this condition as SPL Insufficiency Syndrome, or SPLIS. Some features of this new sphingolipidosis were predicted by the reported phenotypes of Sgpl1 homozygous null mice that serve as vertebrate SPLIS disease models. However, other SPLIS features reveal previously unrecognized roles for SPL in human physiology. In this review, we briefly summarize the biochemistry, functions and regulation of SPL, the main clinical and biochemical features of SPLIS and what is known about the pathophysiology of this condition from murine and cell models. Lastly, we consider potential therapeutic strategies for the treatment of SPLIS patients.


Subject(s)
Aldehyde-Lyases/deficiency , Cell Movement , Lipid Metabolism, Inborn Errors , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Animals , Disease Models, Animal , Humans , Lipid Metabolism, Inborn Errors/enzymology , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Lysophospholipids/genetics , Mice , Mice, Mutant Strains , Sphingosine/genetics , Sphingosine/metabolism , Syndrome
17.
Inflamm Bowel Dis ; 24(6): 1321-1334, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29788359

ABSTRACT

Goal: The aim of this study was to investigate gene expression levels of proteins involved in sphingosine-1-phosphate (S1P) metabolism and signaling in a pediatric inflammatory bowel disease (IBD) patient population. Background: IBD is a debilitating disease affecting 0.4% of the US population. The incidence of IBD in childhood is rising. Identifying effective targeted therapies that can be used safely in young patients and developing tools for selecting specific candidates for targeted therapies are important goals. Clinical IBD trials now underway target S1PR1, a receptor for the pro-inflammatory sphingolipid S1P. However, circulating and tissue sphingolipid levels and S1P-related gene expression have not been characterized in pediatric IBD. Methods: Pediatric IBD patients and controls were recruited in a four-site study. Patients received a clinical score using PUCAI or PCDAI evaluation. Colon biopsies were collected during endoscopy. Gene expression was measured by qRT-PCR. Plasma and gut tissue sphingolipids were measured by LC-MS/MS. Results: Genes of S1P synthesis (SPHK1, SPHK2), degradation (SGPL1), and signaling (S1PR1, S1PR2, and S1PR4) were significantly upregulated in colon biopsies of IBD patients with moderate/severe symptoms compared with controls or patients in remission. Tissue ceramide, dihydroceramide, and ceramide-1-phosphate (C1P) levels were significantly elevated in IBD patients compared with controls. Conclusions: A signature of elevated S1P-related gene expression in colon tissues of pediatric IBD patients correlates with active disease and normalizes in remission. Biopsied gut tissue from symptomatic IBD patients contains high levels of pro-apoptotic and pro-inflammatory sphingolipids. A combined analysis of gut tissue sphingolipid profiles with this S1P-related gene signature may be useful for monitoring response to conventional therapy.


Subject(s)
Colon/metabolism , Gene Expression , Inflammatory Bowel Diseases/metabolism , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Adolescent , Animals , Case-Control Studies , Ceramides/metabolism , Child , Child, Preschool , Chromatography, Liquid , Colon/pathology , Female , Humans , Infant , Inflammatory Bowel Diseases/genetics , Lysophospholipids/genetics , Male , Pilot Projects , Signal Transduction , Sphingosine/genetics , Sphingosine/metabolism , Tandem Mass Spectrometry , Young Adult
18.
Invest New Drugs ; 36(5): 743-754, 2018 10.
Article in English | MEDLINE | ID: mdl-29335887

ABSTRACT

Neuroblastoma is a childhood malignancy that accounts for approximately 15% of childhood cancer deaths. Only 20-35% of children with metastatic neuroblastoma survive with standard therapy. Identification of more effective therapies is essential to improving the outcome of children with high-stage disease. Sphingadienes (SD) are growth-inhibitory sphingolipids found in natural sources including soy. They exhibit chemopreventive activity in mouse models of colon cancer, where they mediate cytotoxicity by inhibiting key pro-carcinogenic signaling pathways. In this study, the effect of SD on neuroblastoma was analyzed. Low micromolar concentrations of SD were cytotoxic to transformed and primary neuroblastoma cells independently of N-Myc amplification status. SD induced both caspase-dependent apoptosis and autophagy in neuroblastoma cells. However, only inhibition of caspase-dependent apoptosis protected neuroblastoma cells from SD-mediated cytotoxicity. SD also inhibited AKT activation in neuroblastoma cells as shown by reduced phosphorylated AKT levels. Pre-treatment with insulin attenuated SD-mediated cytotoxicity in vitro. SD-loaded nanoparticles (NP) administered parenterally to immunodeficient mice carrying neuroblastoma xenografts resulted in cytotoxic levels of SD in the circulation and significantly reduced tumor growth compared to vehicle-treated controls. Analysis of tumor extracts demonstrated reduced AKT activation in tumors of mice treated with SD-NP compared to controls treated with empty NP. Our findings indicate SD are novel potential chemotherapeutic agents that promote neuroblastoma cell death and reduce tumorigenicity in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Nanoparticles/administration & dosage , Neuroblastoma/drug therapy , Sphingolipids/administration & dosage , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , Sphingolipids/blood , Sphingolipids/pharmacokinetics , Tumor Burden/drug effects
19.
J Biol Chem ; 292(49): 20292-20304, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29070677

ABSTRACT

Increasing evidence suggests a crucial role of inflammation in cytokine-mediated ß-cell dysfunction and death in type 1 diabetes mellitus, although the mechanisms are incompletely understood. Sphingosine 1-phosphate (S1P) is a multifunctional bioactive sphingolipid involved in the development of many autoimmune and inflammatory diseases. Here, we investigated the role of intracellular S1P in insulin-secreting INS1E cells by genetically manipulating the S1P-metabolizing enzyme S1P lyase (SPL). The expression of spl was down-regulated by cytokines in INS1E cells and rat islets. Overexpression of SPL protected against cytokine toxicity. Interestingly, the SPL overexpression did not suppress the cytokine-induced NFκB-iNOS-NO pathway but attenuated calcium leakage from endoplasmic reticulum (ER) stores as manifested by lower cytosolic calcium levels, higher expression of the ER protein Sec61a, decreased dephosphorylation of Bcl-2-associated death promoter (Bad) protein, and weaker caspase-3 activation in cytokine-treated (IL-1ß, TNFα, and IFNγ) cells. This coincided with reduced cytokine-mediated ER stress, indicated by measurements of CCAAT/enhancer-binding protein homologous protein (chop) and immunoglobulin heavy chain binding protein (bip) levels. Moreover, cytokine-treated SPL-overexpressing cells exhibited increased expression of prohibitin 2 (Phb2), involved in the regulation of mitochondrial assembly and respiration. SPL-overexpressing cells were partially protected against cytokine-mediated ATP reduction and inhibition of glucose-induced insulin secretion. siRNA-mediated spl suppression resulted in effects opposite to those observed for SPL overexpression. Knockdown of phb2 partially reversed beneficial effects of SPL overexpression. In conclusion, the relatively low endogenous Spl expression level in insulin-secreting cells contributes to their extraordinary vulnerability to proinflammatory cytokine toxicity and may therefore represent a promising target for ß-cell protection in type 1 diabetes mellitus.


Subject(s)
Aldehyde-Lyases/genetics , Aldehyde-Lyases/physiology , Cytokines/toxicity , Insulin-Secreting Cells/enzymology , Adenosine Triphosphate/metabolism , Aldehyde-Lyases/biosynthesis , Animals , Cell Line , Cytokines/pharmacology , Diabetes Mellitus, Type 1/pathology , Endoplasmic Reticulum Stress , Inflammation/chemically induced , Inflammation/prevention & control , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/enzymology , Rats
20.
Clin Case Rep ; 5(6): 891-893, 2017 06.
Article in English | MEDLINE | ID: mdl-28588833

ABSTRACT

The incidence of serum sickness following treatment of CLL with obinutuzumab has not been fully characterized, but is likely rare. Consideration should be given to this diagnosis in appropriate circumstances so that effective corticosteroid therapy can be initiated to alleviate inflammatory symptoms and organ dysfunction in a timely manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...