Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Genes Brain Behav ; 23(2): e12894, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597363

ABSTRACT

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.


Subject(s)
Analgesia , Opioid-Related Disorders , Rats , Animals , Oxycodone/pharmacology , Analgesics, Opioid/pharmacology
2.
PLoS Comput Biol ; 19(1): e1010758, 2023 01.
Article in English | MEDLINE | ID: mdl-36607897

ABSTRACT

Inferring gene co-expression networks is a useful process for understanding gene regulation and pathway activity. The networks are usually undirected graphs where genes are represented as nodes and an edge represents a significant co-expression relationship. When expression data of multiple (p) genes in multiple (K) conditions (e.g., treatments, tissues, strains) are available, joint estimation of networks harnessing shared information across them can significantly increase the power of analysis. In addition, examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. Condition adaptive fused graphical lasso (CFGL) is an existing method that incorporates condition specificity in a fused graphical lasso (FGL) model for estimating multiple co-expression networks. However, with computational complexity of O(p2K log K), the current implementation of CFGL is prohibitively slow even for a moderate number of genes and can only be used for a maximum of three conditions. In this paper, we propose a faster alternative of CFGL named rapid condition adaptive fused graphical lasso (RCFGL). In RCFGL, we incorporate the condition specificity into another popular model for joint network estimation, known as fused multiple graphical lasso (FMGL). We use a more efficient algorithm in the iterative steps compared to CFGL, enabling faster computation with complexity of O(p2K) and making it easily generalizable for more than three conditions. We also present a novel screening rule to determine if the full network estimation problem can be broken down into estimation of smaller disjoint sub-networks, thereby reducing the complexity further. We demonstrate the computational advantage and superior performance of our method compared to two non-condition adaptive methods, FGL and FMGL, and one condition adaptive method, CFGL in both simulation study and real data analysis. We used RCFGL to jointly estimate the gene co-expression networks in different brain regions (conditions) using a cohort of heterogeneous stock rats. We also provide an accommodating C and Python based package that implements RCFGL.


Subject(s)
Algorithms , Brain , Animals , Rats , Computer Simulation , Gene Regulatory Networks/genetics
3.
Genes Brain Behav ; 22(2): e12832, 2023 04.
Article in English | MEDLINE | ID: mdl-36514243

ABSTRACT

High and Low Activity strains of mice were bidirectionally selected for differences in open-field activity (DeFries et al., 1978, Behavior Genetics, 8: 3-13) and subsequently inbred to use as a genetic model for studying anxiety-like behaviors (Booher et al., 2021, Genes, Brain and Behavior, 20: e12730). Hippocampal RNA-sequencing of the High and Low Activity mice identified 3901 differentially expressed protein-coding genes, with both sex-dependent and sex-independent effects. Functional enrichment analysis (PANTHER) highlighted 15 gene ontology terms, which allowed us to create a narrow list of 264 top candidate genes. Of the top candidate genes, 46 encoded four Complexes (I, II, IV and V) and two electron carriers (cytochrome c and ubiquinone) of the mitochondrial oxidative phosphorylation process. The most striking results were in the female high anxiety, Low Activity mice, where 39/46 genes relating to oxidative phosphorylation were upregulated. In addition, comparison of our top candidate genes with two previously curated High and Low Activity gene lists highlight 24 overlapping genes, where Ndufa13, which encodes the supernumerary subunit A13 of complex I, was the only gene to be included in all three lists. Mitochondrial dysfunction has recently been implicated as both a cause and effect of anxiety-related disorders and thus should be further explored as a possible novel pharmaceutical treatment for anxiety disorders.


Subject(s)
Anxiety , Brain , Mice , Female , Animals , Anxiety/genetics , Hippocampus , Sequence Analysis, RNA
4.
Nucleic Acids Res ; 50(19): 10882-10895, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36263809

ABSTRACT

Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci (QTL) associated with transcriptional changes would help to identify mechanisms underlying these traits. We generated genotype and transcriptome data for five brain regions from 88 HS rats. We identified 21 392 cis-QTLs associated with expression and splicing changes across all five brain regions and validated their effects using allele specific expression data. We identified 80 cases where eQTLs were colocalized with genome-wide association study (GWAS) results from nine physiological traits. Comparing our dataset to human data from the Genotype-Tissue Expression (GTEx) project, we found that the HS rat data yields twice as many significant eQTLs as a similarly sized human dataset. We also identified a modest but highly significant correlation between genetic regulatory variation among orthologous genes. Surprisingly, we found less genetic variation in gene regulation in HS rats relative to humans, though we still found eQTLs for the orthologs of many human genes for which eQTLs had not been found. These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new discoveries of the genetic influences of complex traits.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Rats , Humans , Quantitative Trait Loci/genetics , Transcriptome , Genotype , Brain , Polymorphism, Single Nucleotide
5.
Front Genet ; 13: 947423, 2022.
Article in English | MEDLINE | ID: mdl-36186443

ABSTRACT

The Hybrid Rat Diversity Panel (HRDP) is a stable and well-characterized set of more than 90 inbred rat strains that can be leveraged for systems genetics approaches to understanding the genetic and genomic variation associated with complex disease. The HRDP exhibits substantial between-strain diversity while retaining substantial within-strain isogenicity, allowing for the precise mapping of genetic variation associated with complex phenotypes and providing statistical power to identify associated variants. In order to robustly identify associated genetic variants, it is important to account for the population structure induced by inbreeding. To this end, we investigate the performance of four plausible approaches towards modeling quantitative traits in the HRDP and quantify their operating characteristics. In particular, we investigate three approaches based on genome-wide mixed model analysis, and one approach based on ordinary least squares linear regression. Towards facilitating study planning and design, we conduct extensive simulations to investigate the power of genetic association analyses in the HRDP, and characterize the impressive attained power. In simulation of eQTL data in the HRDP, we find that a mixed model approach that leverages leave-one-chromosome-out kinship estimation attains the highest power while controlling type I error.

6.
Front Genet ; 13: 821026, 2022.
Article in English | MEDLINE | ID: mdl-35368676

ABSTRACT

Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556-3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.

7.
J Control Release ; 338: 548-556, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34481928

ABSTRACT

The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.


Subject(s)
Complement Activation , Complement C3 , Animals , Dogs , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats , Rats, Long-Evans
8.
J Heart Lung Transplant ; 40(9): 917-925, 2021 09.
Article in English | MEDLINE | ID: mdl-34253456

ABSTRACT

BACKGROUND: The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS: This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS: Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION: Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.


Subject(s)
Antiviral Agents/pharmacokinetics , Graft Rejection/prevention & control , Heart Transplantation , Hepatocyte Nuclear Factor 1-alpha/genetics , Leukopenia/chemically induced , Mycophenolic Acid/pharmacokinetics , Polymorphism, Single Nucleotide , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/pharmacokinetics , Cytomegalovirus , Female , Follow-Up Studies , Graft Rejection/genetics , Graft Rejection/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Leukopenia/metabolism , Male , Middle Aged , Mycophenolic Acid/adverse effects , Pharmacogenomic Testing/methods , Retrospective Studies , Transplant Recipients
9.
Free Radic Biol Med ; 172: 201-212, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34129926

ABSTRACT

Down syndrome (DS) is the most common genetic cause of intellectual disability. Mechanistically, oxidative stress and mitochondrial dysfunction are reported to be etiological factors for many of the DS-related comorbidities and have previously been reported in a number of in vitro and in vivo models of DS. The purpose of this study was to test for the presence of mitochondrial dysfunction in fibroblast cells obtained via skin biopsy from individuals with DS, and to assess the impact of trisomy 21 on central carbon metabolism. Using extracellular flux assays in matched dermal fibroblasts from euploid and DS individuals, we found that basal mitochondrial dysfunction is quite mild. Stressing the cells with a cocktail of mitochondrial stressors revealed a significant mitochondrial deficit in DS cells compared to euploid controls. Evaluation of extracellular acidification rate did not reveal a baseline abnormality in glycolysis; however, metabolomic assessments utilizing isotopically labeled glucose and glutamine revealed altered central carbon metabolism in DS cells. Specifically, we observed greater glucose dependency, uptake and flux into the oxidative phase of the pentose phosphate pathway in DS fibroblasts. Furthermore, using induced pluripotent stem cells (iPSC) we found that mitochondrial function in DS iPSCs was similar to the previously published studies employing fetal cells. Together, these data indicate that aberrant central carbon metabolism is a candidate mechanism for stress-related mitochondrial dysfunction in DS.


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , Carbon/metabolism , Cells, Cultured , Down Syndrome/genetics , Down Syndrome/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria
10.
Front Genet ; 12: 658983, 2021.
Article in English | MEDLINE | ID: mdl-33868389

ABSTRACT

Background: The goal of the study was to assess the relationship between single nucleotide variants (SNVs) in calcineurin inhibitor (CNI) pharmacokinetic and pharmacodynamic genes and renal dysfunction in adult heart transplant (HTx) recipients. Methods: This retrospective analysis included N = 192 patients receiving a CNI at 1-year post-HTx. Using a candidate gene approach, 93 SNVs in eight pharmacokinetic and 35 pharmacodynamic genes were chosen for investigation. The primary outcome was renal dysfunction 1-year after HTx, defined as an estimated glomerular filtration rate (eGFR) <45 ml/min/1.73m2. Results: Renal dysfunction was present in 28.6% of patients 1-year after HTx. Two SNVs [transforming growth factor beta 1 (TGFB1) rs4803455 C > A and phospholipase C beta 1 (PLCB1) rs170549 G > A] were significantly associated with renal dysfunction after accounting for a false discovery rate (FDR) of 20%. In a multiple-SNV adjusted model, variant A allele carriers of TGFB1 rs4803455 had lower odds of renal dysfunction compared to C/C homozygotes [odds ratio (OR) 0.28, 95% CI 0.12-0.62; p = 0.002], whereas PLCB1 rs170549 variant A allele carriers had higher odds of the primary outcome vs. patients with the G/G genotype (OR 2.66, 95% CI 1.21-5.84, p = 0.015). Conclusion: Our data suggest that genetic variation in TGFB1 and PLCB1 may contribute to the occurrence of renal dysfunction in HTx recipients receiving CNIs. Pharmacogenetic markers, such as TGFB1 rs4803455 and PLCB1 rs170549, could help identify patients at increased risk of CNI-associated renal dysfunction following HTx, potentially allowing clinicians to provide more precise and personalized care to this population.

11.
Nat Commun ; 12(1): 1652, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712618

ABSTRACT

Annotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3'-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model-trained using the Human Brain Reference RNA commercial standard-performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi's input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Polyadenylation , Transcriptome , Animals , Base Sequence , Gene Expression Profiling , Humans , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Systems Biology
12.
J Proteome Res ; 20(1): 236-249, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32924495

ABSTRACT

Liquid chromatography-tandem mass spectrometry is an increasingly powerful tool for studying proteins in the context of disease. As technological advances in instrumentation and data analysis have enabled deeper profiling of proteomes and peptidomes, the need for a rigorous, standardized approach to validate individual peptide-spectrum matches (PSMs) has emerged. To address this need, we developed a novel and broadly applicable workflow: PSM validation with internal standards (P-VIS). In this approach, the fragmentation spectrum and chromatographic retention time of a peptide within a biological sample are compared with those of a synthetic version of the putative peptide sequence match. Similarity measurements obtained for a panel of internal standard peptides are then used to calculate a prediction interval for valid matches. If the observed degree of similarity between the biological and the synthetic peptide falls within this prediction interval, then the match is considered valid. P-VIS enables systematic and objective assessment of the validity of individual PSMs, providing a measurable degree of confidence when identifying peptides by mass spectrometry.


Subject(s)
Peptides , Tandem Mass Spectrometry , Amino Acid Sequence , Chromatography, Liquid , Proteome
13.
Genes Brain Behav ; 20(2): e12698, 2021 02.
Article in English | MEDLINE | ID: mdl-32893479

ABSTRACT

LncRNAs are important regulators of quantitative and qualitative features of the transcriptome. We have used QTL and other statistical analyses to identify a gene coexpression module associated with alcohol consumption. The "hub gene" of this module, Lrap (Long non-coding RNA for alcohol preference), was an unannotated transcript resembling a lncRNA. We used partial correlation analyses to establish that Lrap is a major contributor to the integrity of the coexpression module. Using CRISPR/Cas9 technology, we disrupted an exon of Lrap in Wistar rats. Measures of alcohol consumption in wild type, heterozygous and knockout rats showed that disruption of Lrap produced increases in alcohol consumption/alcohol preference. The disruption of Lrap also produced changes in expression of over 700 other transcripts. Furthermore, it became apparent that Lrap may have a function in alternative splicing of the affected transcripts. The GO category of "Response to Ethanol" emerged as one of the top candidates in an enrichment analysis of the differentially expressed transcripts. We validate the role of Lrap as a mediator of alcohol consumption by rats, and also implicate Lrap as a modifier of the expression and splicing of a large number of brain transcripts. A defined subset of these transcripts significantly impacts alcohol consumption by rats (and possibly humans). Our work shows the pleiotropic nature of non-coding elements of the genome, the power of network analysis in identifying the critical elements influencing phenotypes, and the fact that not all changes produced by genetic editing are critical for the concomitant changes in phenotype.


Subject(s)
Alcohol Drinking/genetics , Brain/metabolism , RNA, Long Noncoding/genetics , Alcohol Drinking/physiopathology , Animals , Quantitative Trait Loci , RNA, Long Noncoding/metabolism , Rats , Rats, Wistar , Transcriptome
14.
Brain Sci ; 10(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066036

ABSTRACT

Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.

15.
PLoS One ; 15(10): e0240253, 2020.
Article in English | MEDLINE | ID: mdl-33095786

ABSTRACT

We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.


Subject(s)
Drug Tolerance/genetics , Ethanol/pharmacology , Alcoholism , Animals , Brain/drug effects , Brain/metabolism , Chromosome Mapping , Female , Genotype , Male , Mice , Mice, Inbred Strains , Quantitative Trait Loci/genetics
16.
G3 (Bethesda) ; 10(11): 3949-3958, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32972998

ABSTRACT

The R7 and R8 photoreceptor cells of the Drosophila compound eye mediate color vision. Throughout the majority of the eye, these cells occur in two principal types of ommatidia. Approximately 35% of ommatidia are of the pale type and express Rh3 in R7 cells and Rh5 in R8 cells. The remaining 65% are of the yellow type and express Rh4 in R7 cells and Rh6 in R8 cells. The specification of an R8 cell in a pale or yellow ommatidium depends on the fate of the adjacent R7 cell. However, pale and yellow R7 cells are specified by a stochastic process that requires the genes spineless, tango and klumpfuss To identify additional genes involved in this process we performed genetic screens using a collection of 480 P{EP} transposon insertion strains. We identified genes in gain of function and loss of function screens that significantly altered the percentage of Rh3 expressing R7 cells (Rh3%) from wild-type. 36 strains resulted in altered Rh3% in the gain of function screen where the P{EP} insertion strains were crossed to a sevEP-GAL4 driver line. 53 strains resulted in altered Rh3% in the heterozygous loss of function screen. 4 strains showed effects that differed between the two screens, suggesting that the effect found in the gain of function screen was either larger than, or potentially masked by, the P{EP} insertion alone. Analyses of homozygotes validated many of the candidates identified. These results suggest that R7 cell fate specification is sensitive to perturbations in mRNA transcription, splicing and localization, growth inhibition, post-translational protein modification, cleavage and secretion, hedgehog signaling, ubiquitin protease activity, GTPase activation, actin and cytoskeletal regulation, and Ser/Thr kinase activity, among other diverse signaling and cell biological processes.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Differentiation , Drosophila/genetics , Drosophila Proteins/genetics , Hedgehog Proteins , Photoreceptor Cells, Invertebrate
17.
Clin Transplant ; 34(5): e13842, 2020 05.
Article in English | MEDLINE | ID: mdl-32090364

ABSTRACT

BACKGROUND: We assessed the relationship between circadian blood pressure (BP) patterns and clinical outcomes in a contemporary cohort of adult heart transplant recipients. METHODS: This retrospective, cross-sectional study included adult heart transplant recipients at least 6 months post-transplant. Ambulatory BP measurements were recorded over 24 hours. Nondippers were defined as a decline in average nighttime BP ≤ 10% compared with daytime. Primary outcomes were the presence of end organ damage, that is, microalbuminuria, chronic kidney disease, and/or left ventricular hypertrophy. Secondary outcomes were measures of diastolic dysfunction (ie, mitral valve deceleration time, e/e', E/A, and isovolumetric relaxation time), microalbumin/creatinine ratio, eGFR, interventricular septal thickness, and left ventricular posterior wall thickness. RESULTS: Of 30 patients, 53.3% (n = 16) were systolic nondippers and 40% (n = 12) were diastolic nondippers. Diastolic nondippers had three times higher urine microalbumin/creatinine ratios than diastolic dippers (P = .03). Systolic nondippers had 16.3% lower mitral valve deceleration time (P = .05) than systolic dippers, while diastolic nondippers had 20.4% higher e/e' (P = .05) than diastolic dippers. There were no significant relationships between BP dipping status and any of the primary outcomes. CONCLUSIONS: These data suggest that systolic and diastolic nondipping BP patterns are associated with subclinical kidney damage and diastolic dysfunction in heart transplant recipients.


Subject(s)
Blood Pressure , Heart Transplantation , Hypertension , Adult , Blood Pressure Monitoring, Ambulatory , Circadian Rhythm , Cross-Sectional Studies , Heart Transplantation/adverse effects , Humans , Retrospective Studies
18.
Epilepsy Res ; 161: 106283, 2020 03.
Article in English | MEDLINE | ID: mdl-32062370

ABSTRACT

Seizures that occur during early development are associated with adverse neurodevelopmental outcomes. Causation and mechanisms are currently under investigation. Induction of an early life seizure by kainic acid (KA) in immature rats on post-natal day (P) 7 results in behavioral changes in the adult rat that reflect social and intellectual deficits without overt cellular damage. Our previous work also demonstrated increased expression of CA1 hippocampal long-term potentiation (LTP) and reduced desensitization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPA-R) one week following a kainic acid induced seizure (KA-ELS). Here we used RNA sequencing (RNAseq) of mRNA from dorsal hippocampal CA1 to probe changes in mRNA levels one week following KA-ELS as a means to investigate the mechanisms for these functional changes. Ingenuity pathway analysis (IPA) confirmed our previous results by predicting an up-regulation of the synaptic LTP pathway. Differential gene expression results revealed significant differences in 7 gene isoforms. Additional assessments included AMPA-R splice variants and adenosine deaminase acting on RNA 2 (ADAR2) editing sites as a means to determine the mechanism for reduced AMPA-R desensitization. Splice variant analysis demonstrated that KA-ELS result in a small, but significant decrease in the "flop" isoform of Gria3, and editing site analysis revealed significant changes in the editing of a kainate receptor subunit, Grik2, and a serotonin receptor, Htr2c. While these specific changes may not account for altered AMPA-R desensitization, the differences indicate that KA-ELS alters gene expression in the hippocampal CA1 one week after the insult.


Subject(s)
Gene Expression Profiling , Hippocampus/drug effects , Seizures/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Animals , Hippocampus/metabolism , Kainic Acid/pharmacology , Neurons/drug effects , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Seizures/diagnosis , Seizures/physiopathology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
19.
Nicotine Tob Res ; 22(8): 1310-1315, 2020 07 16.
Article in English | MEDLINE | ID: mdl-31930296

ABSTRACT

INTRODUCTION: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS: Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS: These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS: We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.


Subject(s)
Behavior, Addictive/genetics , Genetic Markers , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Smoking/genetics , Age of Onset , Behavior, Addictive/epidemiology , Behavior, Addictive/psychology , Colorado/epidemiology , Humans , Phenotype , Smoking/epidemiology , Smoking/psychology
20.
Toxicol Lett ; 322: 1-11, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31884112

ABSTRACT

Chloropicrin (CP), a warfare agent now majorly used as a soil pesticide, is a strong irritating and lacrimating compound with devastating toxic effects. To elucidate the mechanism of its ocular toxicity, toxic effects of CP (0-100 µM) were studied in primary human corneal epithelial (HCE) cells. CP exposure resulted in reduced HCE cell viability and increased apoptotic cell death with an up-regulation of cleaved caspase-3 and poly ADP ribose polymerase indicating their contribution in CP-induced apoptotic cell death. Following CP exposure, cells exhibited increased expression of heme oxygenase-1, and phosphorylation of H2A.X and p53 as well as 4-hydroxynonenal adduct formation, suggesting oxidative stress, DNA damage and lipid peroxidation. CP also caused increases in mitogen activated protein kinase-c-Jun N-terminal kinase and inflammatory mediator cyclooxygenase-2. Proteomic analysis revealed an increase in the carbonylation of 179 proteins and enrichment of pathways (including proteasome pathway and catabolic process) in HCE cells following CP exposure. CP-induced oxidative stress and lipid peroxidation can enhance protein carbonylation, prompting alterations in corneal epithelial proteins as well as perturbing signaling pathways resulting in toxic effects. Pathways and major processes identified following CP exposure could be lead-hit targets for further biochemical and molecular characterization as well as therapeutic intervention.


Subject(s)
Apoptosis/drug effects , Epithelial Cells/drug effects , Epithelium, Corneal/drug effects , Hydrocarbons, Chlorinated/toxicity , Oxidative Stress/drug effects , Pesticides/toxicity , Protein Carbonylation/drug effects , Caspase 3/metabolism , Cells, Cultured , Cyclooxygenase 2/metabolism , DNA Damage , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Heme Oxygenase-1/metabolism , Histones/metabolism , Humans , Inflammation Mediators/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Peroxidation , Phosphorylation , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...