Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5628, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699897

ABSTRACT

The postnatal interaction between microbiota and the immune system establishes lifelong homeostasis at mucosal epithelial barriers, however, the barrier-specific physiological activities that drive the equilibrium are hardly known. During weaning, the oral epithelium, which is monitored by Langerhans cells (LC), is challenged by the development of a microbial plaque and the initiation of masticatory forces capable of damaging the epithelium. Here we show that microbial colonization following birth facilitates the differentiation of oral LCs, setting the stage for the weaning period, in which adaptive immunity develops. Despite the presence of the challenging microbial plaque, LCs mainly respond to masticatory mechanical forces, inducing adaptive immunity, to maintain epithelial integrity that is also associated with naturally occurring alveolar bone loss. Mechanistically, masticatory forces induce the migration of LCs to the lymph nodes, and in return, LCs support the development of immunity to maintain epithelial integrity in a microbiota-independent manner. Unlike in adult life, this bone loss is IL-17-independent, suggesting that the establishment of oral mucosal homeostasis after birth and its maintenance in adult life involve distinct mechanisms.


Subject(s)
Langerhans Cells , Microbiota , Adult , Humans , Interleukin-17 , Homeostasis , Adaptive Immunity , Plaque, Amyloid
2.
Cell Rep ; 42(1): 111981, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640306

ABSTRACT

While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.


Subject(s)
Microbiota , Receptors, Polymeric Immunoglobulin , Mice , Animals , Saliva , Salivary Glands , Immunoglobulin G
3.
Eur J Immunol ; 53(11): e2249819, 2023 11.
Article in English | MEDLINE | ID: mdl-36512638

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , Skin , Animals , Humans , Flow Cytometry , Myeloid Cells , Kidney , Mammals
4.
STAR Protoc ; 3(1): 101048, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34977687

ABSTRACT

The murine parotid salivary glands develop postnatally, shaping oral mucosal immunity in early and adult life. This protocol details the surgical removal of the parotid glands (parotidectomy) of mice. We also describe a protocol for saliva collection to enable manipulation and measurement of physiological and immunological salivary functions. Our saliva collection approach has been modified from published protocols to enable saliva collection from young mice, which can be challenging. For complete details on the use and execution of this protocol, please refer to Koren et al. (2020).


Subject(s)
Saliva , Salivary Glands , Animals , Mice , Parotid Gland/surgery , Salivary Glands/surgery
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012988

ABSTRACT

Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αßT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.


Subject(s)
Antineoplastic Agents/metabolism , Carcinogens/toxicity , Langerhans Cells/metabolism , 4-Nitroquinoline-1-oxide/toxicity , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/pathology , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/pathology , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Histones/metabolism , Humans , Immunity/drug effects , Langerhans Cells/drug effects , Phagocytes/drug effects , Phagocytes/metabolism , Phagocytes/pathology , Quinolones/toxicity , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Tongue/pathology , Transcriptome/genetics
6.
Cell Host Microbe ; 29(2): 197-209.e5, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33412104

ABSTRACT

Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning. Neutrophils are present in the oral epithelium prenatally, and exposure to the microbiota postnatally further recruits them to the preamble neonatal epithelium by γδT17 cells. These neutrophils virtually disappear during weaning as the epithelium seals. The neonate and adult epithelium display distinct turnover kinetics and transcriptomic signatures, with neonate epithelium reminiscent of the signature found in germ-free mice. Microbial reduction during weaning is mediated by the upregulation of saliva production and induction of salivary antimicrobial components by the microbiota. Collectively, unique postnatal interactions between the multilayer epithelium and microbiota shape oral homeostasis.


Subject(s)
Bacterial Load , Mouth Mucosa/immunology , Mouth Mucosa/microbiology , Neutrophils/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Saliva/microbiology , Animals , Animals, Newborn/growth & development , Animals, Newborn/microbiology , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouth Mucosa/cytology , Mouth Mucosa/growth & development , Th17 Cells/immunology
7.
Mucosal Immunol ; 13(5): 767-776, 2020 09.
Article in English | MEDLINE | ID: mdl-32457449

ABSTRACT

Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.


Subject(s)
Cell Differentiation , Cellular Microenvironment/immunology , Langerhans Cells/immunology , Langerhans Cells/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Age Factors , Aging/physiology , Animals , Biomarkers , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cellular Microenvironment/genetics , Cellular Senescence/genetics , Cellular Senescence/immunology , Epidermal Cells/immunology , Epidermal Cells/metabolism , Epidermis/immunology , Epidermis/metabolism , Epidermis/microbiology , Gene Expression , Gingiva/immunology , Gingiva/metabolism , Gingiva/microbiology , Immunophenotyping , Langerhans Cells/cytology , Mice , Microbiota , Mucous Membrane/microbiology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
8.
J Oral Pathol Med ; 47(1): 48-52, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28833597

ABSTRACT

BACKGROUND: Survivin, a member of the inhibitor of apoptosis family, is overexpressed in most human tumors, but undetectable in normal adult tissues. It is a promising target molecule in cancer treatment, as interference in its function promotes apoptosis. Artepillin C, a major, biologically active ingredient of Brazilian propolis, possesses anticancer activity against several cancer cells with different tissue origins. However, little is known about its bioactivity on oral squamous cell carcinoma cells or its effect on survivin expression. The aim of this study was to investigate the cytotoxic and antisurvivin activities of artepillin C in oral squamous cell carcinoma cells. METHODS: HSC-3 human oral squamous cell carcinoma cells were treated with varying doses of artepillin C for up to 72 hours. Cell viability was measured by WST-1, and the cytotoxic effects of artepillin C on HSC-3 cells were quantified with flow cytometry. The survivin levels were determined by ELISA. RESULTS: Artepillin C exhibited dose- and time-dependent cytotoxic effects on HSC-3 cells. Flow cytometric analysis showed that 22% of untreated HSC-3 cells underwent spontaneous cell death, whereas 77.32% of the cells were killed in response to the highest dose of artepillin C at 72 hours. Survivin expression was reduced in treated cells. CONCLUSIONS: HSC-3 cells are vulnerable to artepillin C in a dose- and time-dependent manner. HSC-3 cell death induced by artepillin C, at least in part, was a result of a decrease in survivin levels.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Inhibitor of Apoptosis Proteins/drug effects , Mouth Neoplasms/drug therapy , Phenylpropionates/pharmacology , Apoptosis/drug effects , Brazil , Carcinoma, Squamous Cell/pathology , Cell Death/drug effects , Cell Line, Tumor/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/biosynthesis , Mouth Neoplasms/pathology , Phenylpropionates/administration & dosage , Propolis/pharmacology , Survivin , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...