Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 103(7): 1259-71, 2016 07.
Article in English | MEDLINE | ID: mdl-27440792

ABSTRACT

PREMISE OF THE STUDY: The depiction of polyploid speciation as instantaneous implies that strong prezygotic and postzygotic isolation form as a direct result of whole-genome duplication. However, the direct vs. indirect contributions of genome duplication to phenotypic divergence and prezygotic isolation are rarely quantified across multiple reproductive barriers. METHODS: We compared the phenotypic differences between diploid and both naturally occurring and synthesized tetraploids (neotetraploids) of the plant Chamerion angustifolium. Using this information and additional published values for this species, we compared the magnitude of isolation (ecological, flowering, pollinator, and gametic) between diploids and natural-occurring tetraploids to that between diploids and neotetraploids. KEY RESULTS: Differences among ploidy cytotypes were observed for eight of 12 vegetative and reproductive traits measured. Neotetraploids resembled diploids but differed from natural tetraploids with respect to four traits, including flowering time and plant height. Diploid-neotetraploid (2x-4xneo) experimental arrays exhibited lower pollinator fidelity to cytotype and seed set compared with 2x-4xnat arrays. Based on these results and published evidence, reproductive isolation between diploids and neotetraploids across all four life stages averaged 0.48 and deviated significantly from that between diploids and natural tetraploids (RI = 0.96). CONCLUSIONS: Genome duplication causes phenotypic shifts and contributes directly to prezygotic isolation for some barriers (gametic isolation) but cannot account for the cumulative isolation from diploids observed in natural tetraploids. Therefore, conditions for species formation through genome duplication are not necessarily instantaneous and selection to strengthen prezygotic barriers in young polyploids is critical for the establishment of polyploid species in sympatry.


Subject(s)
Genetic Speciation , Genome, Plant/genetics , Onagraceae/genetics , Ploidies , Diploidy , Flowers/genetics , Flowers/physiology , Onagraceae/physiology , Phenotype , Pollination , Polyploidy , Reproduction , Sympatry , Tetraploidy , Time Factors
2.
Am J Bot ; 100(5): 962-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23629844

ABSTRACT

PREMISE OF THE STUDY: Polyploids are often geographically segregated from their diploid progenitors, but the extent of sympatry and the consequences for reproductive isolation and coexistence are rarely quantified. • METHODS: In this study, we document the distribution and co-occurrence of diploid and tetraploid Chamerion angustifolium among 57 populations within the diploid-tetraploid contact zone in the Canadian Rocky Mountains. Rates of hybrid mating in mixed-ploidy populations were inferred from the frequency of triploid offspring in open-pollinated seed families. • KEY RESULTS: Twenty-three of 57 populations sampled contained a single cytotype; 20 (87%) were tetraploid and three (13%) were diploid. Thirty-four populations (60%) contained multiple ploidies. Diploid and tetraploid plants occurred in all mixed-ploidy populations; triploids occurred in 13 populations and averaged 1.4% of plants per population. The proportion of tetraploids in a population was negatively related to elevation (partial regression: F = 27.2, P <0.0001) and latitude (partial regression: F = 17.4, P < 0.0001). Triploids were detected in seed from all eight mixed-ploidy populations sampled ( = 3.7% of seed per population), comprising 7% of that expected with random mating (G = 2589.2, df = 1, P <0.0001, n = 2628), and were more often produced by diploid maternal parents than tetraploid parents. • CONCLUSIONS: Our results indicate that tetraploids regularly coexist with diploids in the contact zone and that this coexistence is likely promoted by both strong reproductive isolation and asymmetric intercytotype mating between diploid and tetraploid C. angustifolium.


Subject(s)
Hybridization, Genetic , Onagraceae/genetics , Ploidies , Genetic Variation
3.
Oecologia ; 150(3): 398-408, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17024387

ABSTRACT

Establishment of polyploid individuals within diploid populations is theoretically unlikely unless polyploids are reproductively isolated, pre-zygotically, through assortative pollination. Here, we quantify the contribution of pollinator diversity and foraging behaviour to assortative pollen deposition in three mixed-ploidy populations of Chamerion angustifolium (Onagraceae). Diploids and tetraploids were not differentiated with respect to composition of insect visitors. However, foraging patterns of the three most common insect visitors (all bees) reinforced assortative pollination. Bees visited tetraploids disproportionately often and exhibited higher constancy on tetraploids in all three populations. In total, 73% of all bee flights were between flowers of the same ploidy (2x-2x, 4x-4x); 58% of all flights to diploids and 83% to tetraploids originated from diploid and tetraploid plants, respectively. Patterns of pollen deposition on stigmas mirrored pollinator foraging behaviour; 73% of all pollen on stigmas (70 and 75% of pollen on diploid and tetraploid stigmas, respectively) came from within-ploidy pollinations. These results indicate that pollinators contribute to high rates of pre-zygotic reproductive isolation. If patterns of fertilization track pollen deposition, pollinator-plant interactions may help explain the persistence and spread of tetraploids in mixed-ploidy populations.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Onagraceae/physiology , Ploidies , Pollen/genetics , Alberta , Analysis of Variance , Animals , Genetic Speciation , Onagraceae/genetics , Reproduction/physiology
4.
New Phytol ; 161(3): 703-713, 2004 Mar.
Article in English | MEDLINE | ID: mdl-33873724

ABSTRACT

Polyploidy is viewed as an important mechanism of sympatric speciation, but few studies have documented the reproductive barriers between polyploids and their diploid progenitors or explored the significance of assortative mating for polyploid establishment. Here we synthesize new and existing data on five prezygotic (geographic isolation, flowering asynchrony, pollinator fidelity, self-pollination, gametic selection) and two postzygotic (selection against triploid hybrids, inbreeding depression) reproductive barriers between diploid and autotetraploid individuals of the perennial plant Chamerion angustifolium. We also present estimates of realized rates of between-ploidy mating and examine the impact of assortative mating on polyploid dynamics using computer simulation. Reproductive isolation (measured from 0 to 1) was enforced by each barrier, including: geographic separation (RI = 0.41), flowering asynchrony (0.13), pollinator fidelity (0.85), self-pollination (0.44), gametic selection (0.44) and postzygotic isolation (0.87). Total reproductive isolation was 0.997, with the largest relative contributions by geography (41%) and pollinator fidelity (44%). Prezygotic barriers accounted for 97.6% isolation overall; however, tetraploids were more assortatively mating (98%) than diploids (79%). Realized reproductive isolation between ploidy levels in sympatric populations was 87% and tetraploids produced significantly fewer triploids than did diploids. Simulations indicated that the observed prezygotic isolation will reduce the strength of minority disadvantage acting on tetraploids and increase the importance of differences in viability and fertility between cytotypes in regulating polyploidy establishment.

5.
J Econ Entomol ; 96(3): 547-54, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12852587

ABSTRACT

Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.


Subject(s)
Agriculture/methods , Bees/physiology , Fertilization/physiology , Pollen/physiology , Solanum lycopersicum/physiology , Agriculture/economics , Agriculture/instrumentation , Animals , Body Weight , Crops, Agricultural/economics , Crops, Agricultural/physiology , Flight, Animal , Flowers/physiology , Solanum lycopersicum/economics , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...