Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 857: 147196, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36641075

ABSTRACT

Horn cancer is most devastating and prominent cancer in Indian zebu cattle that affects socio-economic condition of small-scale farmers who depends on their cattle for farm work. Development in the field for genomics through next generation sequencing and bioinformatics advancement have helped to identify genes which have a role in horn cancer development. Histopathological examination of cancerous tissues of horn revealed myxomatous changes, well, moderate and poorly differentiated squamous cell carcinoma. Differential gene expression analysis showed 40, 11, 66 and 29 upregulated genes and 10, 14, 08 and 07 down-regulated genes in myxomatous, well, moderate and poorly differentiated squamous cell carcinoma as compared to normal. Significant differentially expressed genes are related to cell development, cell proliferation, cell-cell communication, cell signaling and angiogenesis which are linked to Akt pathway, mTOR pathway and Wnt pathway. Activity of these genes and related pathways have already been established about their role in development of cancer. Among the candidate genes; keratin family, keratin family related gene, chemokine signaling and cytokines signaling associated genes could be a prominent target for the development of stage specific prognosis marker after further detailed study at large sample population level. CSTA, PTN, SPP1 genes have upregulation in all stages of cancer and they have enrolled as biomarkers for horn cancer.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Profiling , Animals , Cattle , Wnt Signaling Pathway/genetics , Up-Regulation , Cell Communication , Carcinoma, Squamous Cell/pathology , Transcriptome/genetics , Gene Expression Regulation, Neoplastic
2.
BMC Vet Res ; 16(1): 461, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243240

ABSTRACT

BACKGROUND: Squamous Cell Carcinoma of horn, also known as horn cancer, is a prevailing type of cancer in cattles especially Bos indicus. It is one of the most prevalent disease in Indian bullocks often resulting in death and huge economic losses to farmers. Here, we have reported the use of targeted exome sequencing to identify variants present in horn cancer affected horn mucosa tissue and blood of the same animal to identify some of the prevalent markers of horn cancer. RESULTS: We have observed higher number of variants present in tissue as compared to blood as well as among cancer samples compared to samples from normal animals. Eighty six and 1437 cancer-specific variants were identified among the predicted variants in blood and tissue samples, respectively. Total 25 missense variants were observed distributed over 18 genes. KRT8 gene coding for Keratin8, one of the key constituents of horn, displayed 5 missense variants. Additionally, three other genes involved in apoptosis pathway and two genes involved in antigen presentation and processing also contained variants. CONCLUSIONS: Several genes involved in various apoptotic pathways were found to contain non-synonymous mutations. Keratin8 coding for Keratin, a chief constituent of horn was observed to have the highest number of mutations. In all, we present a preliminary report of mutations observed in horn cancer.


Subject(s)
Carcinoma, Squamous Cell/veterinary , High-Throughput Nucleotide Sequencing/veterinary , Horns/pathology , Animals , Apoptosis/genetics , Carcinoma, Squamous Cell/genetics , Cattle , Cattle Diseases/blood , Cattle Diseases/genetics , Cattle Diseases/pathology , India , Keratin-8/genetics , Male , Mutation
3.
3 Biotech ; 10(9): 414, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32983825

ABSTRACT

Here, we designed a custom panel targeting whole ß-casein gene SNPs of zebu and taurine cattle breeds to identify variants and applicability in dairy cattle genotyping. We sequenced two libraries consisting of different pools of primer sets from 95 individuals on the Illumina MiSeq. Consequently, over 92% target regions were amplified and 71 SNPs were available after quality filtering. Only three intronic variants were novel while majority of the identified variants were catalogued in dbSNP as known variants. Identified missense SNPs lead to variant A1/A2, B, F and A3, located in exon 7 only. For confirmation, A1/A2 locus was genotyped using PCR-RFLP. Variant B was observed in all animals, either in homozygous or in heterozygous form. Variants A1, F and A3 predicted to have a deleterious effect on protein function by decreasing the structural stability. Additionally, SIFT score revealed that the A1 variant might affect the protein function.

4.
3 Biotech ; 10(3): 92, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32089987

ABSTRACT

Horn cancer is most prevalent in Bos indicus and poorly defined genetic landscape makes disease diagnosis and treatment difficult. In this study, RNA-Seq and data analysis using CLC Genomics Workbench was employed to identify biomarkers associated with horn cancer. As a result, a total of 149 genes were found significant differentially expressed in horn cancer samples compared to horn normal samples. The study revealed 'keratins' and 'interleukins' as apex groups of significant differentially expressed genes (DEGs). Functional analysis showed that the upregulated keratins support metastasis of tumor via cell proliferation, migration, and affecting cell stability, while downregulated interleukins along with other associated chemokine receptors deprive the immune response to tumor posing clear path for metastasis of horn cancer. Combi-action of both the group facilitates the tumor microenvironment to reproduce tumorigenesis. Analysis of pathways enriched in DEGs and exemplified protein-protein interaction network indicated actual role of DEGs in horn cancer at a fine level. Important effect of deregulated expression of keratin and interleukin genes in horn cancer enrolling their candidacy as potential biomarkers for horn cancer prognosis. This study appraises the possibility to mitigate horn cancer at fine resolution to extract attainable identification of prognostic molecular portraits.

5.
Funct Integr Genomics ; 20(1): 75-87, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31368028

ABSTRACT

Long non-coding RNA (lncRNA) was previously considered as a non-functional transcript, which now established as part of regulatory elements of biological events such as chromosome structure, remodeling, and regulation of gene expression. The study presented here showed the role of lncRNA through differential expression analysis on cancer-related coding genes in horn squamous cell carcinoma of Indian zebu cattle. A total of 10,360 candidate lncRNAs were identified and further analyzed for its coding potential ability using three tools (CPC, CPAT, and PLEK) that provide 8862 common lncRNAs. Pfam analysis of these common lncRNAs gave 8612 potential candidates for lncRNA differential expression analysis. Differential expression analysis showed a total of 59 significantly differentially expressed genes and 19 lncRNAs. Pearson's correlation analysis was used to identify co-expressed mRNA-lncRNAs to established relation of the regulatory role of lncRNAs in horn cancer. We established a positive relation of seven upregulated (XLOC_000016, XLOC_002198, XLOC_002851, XLOC_ 007383, XLOC_010701, XLOC_010272, and XLOC_011517) and one downregulated (XLOC_011302) lncRNAs with eleven genes that are related to keratin family protein, keratin-associated protein family, cornifelin, corneodesmosin, serpin family protein, and metallothionein that have well-established role in squamous cell carcinoma through cellular communication, cell growth, cell invasion, and cell migration. These biological events were found to be related to the MAPK pathway of cell cycle regulation indicating the role of lncRNAs in manipulating cell cycle regulation during horn squamous cell carcinomas that will be useful in identifying molecular portraits related to the development of horn cancer.


Subject(s)
Cattle Diseases/genetics , Horns , Neoplasms/veterinary , RNA, Long Noncoding/metabolism , Animals , Cattle , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Long Noncoding/physiology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
6.
PLoS One ; 14(6): e0218381, 2019.
Article in English | MEDLINE | ID: mdl-31233531

ABSTRACT

Male sterility (induced or natural) is a potential tool for commercial hybrid seed production in different crops. Despite numerous endeavors to understand the physiological, hereditary, and molecular cascade of events governing CMS in cotton, the exact biological process controlling sterility and fertility reconstruction remains obscure. During current study, RNA-Seq using Ion Torrent S5 platform is carried out to identify 'molecular portraits' in floral buds among the Cytoplasmic Genic Male Sterility (CGMS) line, its near-isogenic maintainer, and restorer lines. A total of 300, 438 and 455 genes were differentially expressed in CGMS, Maintainer, and Restorer lines respectively. The functional analysis using AgriGo revealed suppression in the pathways involved in biogenesis and metabolism of secondary metabolites which play an important role in pollen and anther maturation. Enrichment analysis showed dearth related to pollen and anther's development in sterile line, including anomalous expression of genes and transcription factors that have a role in the development of the reproductive organ, abnormal cytoskeleton formation, defects in cell wall formation. The current study found aberrant expression of DYT1, AMS and cytochrome P450 genes involved in tapetum formation, pollen development, pollen exine and anther cuticle formation associated to male sterility as well as fertility restoration of CGMS. In the current study, more numbers of DEGs were found on Chromosome D05 and A05 as compared to other chromosomes. Expression pattern analysis of fourteen randomly selected genes using qRT-PCR showed high concurrence with gene expression profile of RNA-Seq analysis accompanied by a strong correlation of 0.82. The present study provides an important support for future studies in identifying interaction between cyto-nuclear molecular portraits, to accelerate functional genomics and molecular breeding related to cytoplasmic male sterility studies in cotton.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gossypium/growth & development , Gossypium/genetics , Plant Infertility/genetics , Pollen/growth & development , Pollen/genetics , Chromosomes, Plant/genetics , Flowers/genetics , Gene Ontology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...