Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 262: 178-183, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29751906

ABSTRACT

'Calçots', the immature floral stems of second-year onion resprouts, are an economically important traditional crop in Catalonia (Spain). Classical approaches to evaluating the chemical properties of 'calçots' are time consuming and expensive; near-infrared spectroscopy (NIRS) may be faster and cheaper. We used NIRS to develop partial least square (PLS) models to predict dry matter, soluble solid content, titratable acidity, and ash content in cooked 'calçots'. To guarantee the robustness of the models, calibration samples were grown and analyzed in a first season (2014-15) and validation samples in a second season (2015-16). NIRS on puree spectra estimated dry matter and soluble solid content with excellent accuracy (R2pred = 0.953, 0.985 and RPD = 4.571, 8.068, respectively). However, good estimation of titratable acidity and ash content required using ground dried puree spectra (R2pred = 0.852, 0.820 and RPD = 2.590, 1.987, respectively). NIRS can be a helpful tool for 'calçots' breeding and quality control.


Subject(s)
Onions/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Plant Breeding , Regression Analysis , Spain
2.
Biochim Biophys Acta ; 1843(4): 789-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24462772

ABSTRACT

Cytosolic-free Ca(2+) plays a crucial role in blood platelet function and is essential for thrombosis and hemostasis. Therefore, cytosolic-free Ca(2+) concentration is tightly regulated in this cell. TRPC6 is expressed in platelets, and an important role for this Ca(2+) channel in Ca(2+) homeostasis has been reported in other cell types. The aim of this work is to study the function of TRPC6 in platelet Ca(2+) homeostasis. The absence of TRPC6 resulted in an 18.73% decreased basal [Ca(2+)]c in resting platelets as compared to control cells. Further analysis confirmed a similar Ca(2+) accumulation in wild-type and TRPC6-deficient mice; however, passive Ca(2+) leak rates from agonist-sensitive intracellular stores were significantly decreased in TRPC6-deficient platelets. Biotinylation studies indicated the presence of an intracellular TRPC6 population, and subcellular fractionation indicated their presence on endoplasmic reticulum membranes. Moreover, the presence of intracellular calcium release in platelets stimulated with 1-oleoyl-2-acetyl-sn-glycerol further suggested a functional TRPC6 population located on the intracellular membranes surrounding calcium stores. However, coimmunoprecipitation assay confirmed the absence of STIM1-TRPC6 interactions in resting conditions. This findings together with the absence of extracellular Mn(2+) entry in resting wild-type platelets indicate that the plasma membrane TRPC6 fraction does not play a significant role in the maintenance of basal [Ca(2+)]c in mouse platelets. Our results suggest an active participation of the intracellular TRPC6 fraction as a regulator of basal [Ca(2+)]c, controlling the passive Ca(2+) leak rate from agonist-sensitive intracellular Ca(2+) stores in resting platelets.


Subject(s)
Blood Platelets/metabolism , Calcium/metabolism , Homeostasis , TRPC Cation Channels/metabolism , Animals , Cytosol/metabolism , Diglycerides/pharmacology , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , TRPC6 Cation Channel
3.
J Agric Food Chem ; 60(3): 706-12, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22175284

ABSTRACT

Near-infrared spectroscopy (NIRS) is a well-established technique for determining the components of foods. Sample preparation for NIRS is easy, making it suitable for breeding and/or quality evaluation, for which a large number of samples should be analyzed. We aimed to assess the feasibility of NIRS to estimate parameters that seem to influence consumers' perception of the seed coat of common beans: dietary fiber (DF), uronic acids (UA), ashes, calcium, and magnesium. We used reference methods to analyze ground seed coats of 90 common bean samples with a wide range of genetic variability and cultivated at many locations. We registered the NIR spectra on intact beans and ground seed coat samples. We derived partial least-squares (PLS) regression equations from a set of calibration samples and tested their predictive power in an external validation set. For intact beans, only RER values for ashes and calcium are good enough for very rough screening. For ground seed coat samples, the RPD and RER values for ashes (3.49 and 14.09, respectively) and calcium (3.57 and 12.70, respectively) are good enough for screening. RPD and RER values for DF (2.60 and 9.15, respectively) and RER values for magnesium (6.57) also enable rough screening. A poorer correlation was achieved for UA. We conclude that NIRS can help in common bean breeding research and quality evaluation.


Subject(s)
Phaseolus/chemistry , Phaseolus/genetics , Spectroscopy, Near-Infrared/methods , Breeding , Dietary Fiber/analysis , Plant Proteins/chemistry , Quality Control , Seeds/chemistry , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...