Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 17(1): 4-22, 2018 01.
Article in English | MEDLINE | ID: mdl-28753255

ABSTRACT

To expand, analyze and extend published behavioral phenotypes relevant to autism spectrum disorder (ASD), we present a study of three ASD genetic mouse models: Feng's Shank3tm2Gfng model, hereafter Shank3/F, Jiang's Shank3tm1Yhj model, hereafter Shank3/J and the Cacna1c deletion model. The Shank3 models mimick gene mutations associated with Phelan-McDermid Syndrome and the Cacna1c model recapitulates the deletion underlying Timothy syndrome. This study utilizes both standard and novel behavioral tests with the same methodology used in our previously published companion report on the Cntnap2 null and 16p11.2 deletion models. We found that some but not all behaviors replicated published findings and those that did replicate, such as social behavior and overgrooming in Shank3 models, tended to be milder than reported elsewhere. The Shank3/F model, and to a much lesser extent, the Shank3/J and Cacna1c models, showed hypoactivity and a general anxiety-like behavior triggered by external stimuli which pervaded social interactions. We did not detect deficits in a cognitive procedural learning test nor did we observe perseverative behavior in these models. We did, however, find differences in exploratory patterns of Cacna1c mutant mice suggestive of a behavioral effect in a social setting. In addition, only Shank3/F showed differences in sensory-gating. Both positive and negative results from this study will be useful in identifying the most robust and replicable behavioral signatures within and across mouse models of autism. Understanding these phenotypes may shed light of which features to study when screening compounds for potential therapeutic interventions.


Subject(s)
Autism Spectrum Disorder/genetics , Calcium Channels, L-Type/genetics , Disease Models, Animal , Nerve Tissue Proteins/genetics , Animals , Anxiety/genetics , Anxiety/metabolism , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Behavior, Animal/physiology , Calcium Channels, L-Type/metabolism , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Female , Long QT Syndrome/genetics , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins , Nerve Tissue Proteins/metabolism , Social Behavior , Syndactyly/genetics
2.
Obes Rev ; 16(10): 871-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26214605

ABSTRACT

The circadian system, headed by the suprachiasmatic nucleus, synchronizes behaviour and metabolism according to the external light-dark cycle through neuroendocrine and autonomic signals. Metabolic diseases, such as steatosis, obesity and glucose intolerance, have been associated with conditions of circadian misalignment wherein the feeding schedule has been moved to the resting phase. Here we describe the physiological processes involved in liver lipid accumulation and show how they follow a circadian pattern importantly regulated by both the autonomic nervous system and the feeding-fasting cycle. We propose that an unbalanced activity of the sympathetic-parasympathetic branches between organs induced by circadian misalignment provides the conditions for the development and progression of non-alcoholic fatty liver disease.


Subject(s)
Autonomic Nervous System/physiopathology , Fatty Acids, Nonesterified/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Period Circadian Proteins/metabolism , Adipose Tissue , Circadian Rhythm , Gene Expression Regulation , Humans , Lipolysis , Molecular Sequence Data , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/complications , Obesity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...