Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(1): e24125, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226208

ABSTRACT

Food processing and digestion can alter bioactive compound composition of food, affecting their potential biological activity. In this study, we evaluated the direct and protective antioxidant effects of polyphenols extracted from defatted chia flour (DCF) (salviaflaside, rosmarinic and fertaric acid as major compounds), sweet cookies supplemented with DCF (CFC) (same major compounds), and their digested fractions (rosmarinic acid, salviaflaside, fertaric and salvianolic E/B/L acid as major compounds) in HepG2 cells in basal and in oxidative stress conditions. DCF showed protective antioxidant effects by decreasing reactive oxygen species (ROS) and protein oxidation products (POP) while increasing reduced glutathione (GSH). Additionally, CFC revealed similar protective effects and even showed enhanced modulation of the antioxidant system due to the activation of antioxidant enzymes. However, the digested fractions only decreased ROS, indicating continued antioxidant effects. This study underscores the importance of evaluating manufacturing and digestion effects to confirm a food's antioxidant properties.

2.
Front Med (Lausanne) ; 10: 1274303, 2023.
Article in English | MEDLINE | ID: mdl-38131041

ABSTRACT

With the introduction of elexacaftor/tezacaftor/ivacaftor (ETI), more women with cystic fibrosis (CF) are likely to grow families. Hence, an understanding long-term safety and effects of CFTR modulators on fertile women and children while monitoring their concentrations is crucial. Here, we report on the development of an improved LC-MS/MS methodology to measure ETI concentrations in maternal and child blood and breastmilk, applied in one case of successful pregnancy of a 30-year-old woman with CF (F508del/R334W). We observed that ETI remains stable in breastmilk, is absorbed by the infant and can be detected in child plasma. Our results confirm accumulating evidence of a successful pregnancy in women treated with CFTR modulators without significant side effects on the child and provide valuable analytical procedures suitable for the post-marketing evaluation of CFTR modulators in pregnant and lactating women, as well as in their infants.

4.
Int J Biol Macromol ; 222(Pt B): 1861-1875, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36208815

ABSTRACT

3D printing of polymeric scaffolds and autologous stem cells is a promising tool for damaged facial cartilage reconstruction surgeries. To this end, suitable bioinks are needed to generate scaffolds with the required morphological and functional features. We formulated hydrogel bioinks using k-Carrageen (kC) and poly(vinyl alcohol) (PVA) in three different weight ratios. The kC gives the systems the ability to undergo rapid sol-to-gel transitions upon cooling from 60 °C and above to body temperature, while the PVA is used as rheology modifier and porogen. The latter is crosslinked after molding or printing by freeze-thaw cycling for 1 day (FT1) or 5 days (FT5). To select the most suitable formulation for 3D printing, the sol-to-gel transition and the physico-chemical, mechanical and morphological properties of obtained hydrogels were studied. Moreover, the absence of cytotoxic effects of the material on SASCs was assessed in both stemness-preserving or chondro-inductive media. Printing trials were performed to identify optimal process parameters and co-printing and post-printing seeding approaches of SASCs were evaluated. Cells were found to be viable after co-printing and also after the FT1 treatment. Viable adherent cells were also found in the FT5 system, where cells were plated after freezing and thawing treatment.


Subject(s)
Printing, Three-Dimensional , Tissue Scaffolds , Carrageenan/pharmacology , Carrageenan/chemistry , Tissue Scaffolds/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Cartilage , Tissue Engineering
6.
Front Endocrinol (Lausanne) ; 13: 924942, 2022.
Article in English | MEDLINE | ID: mdl-35837315

ABSTRACT

The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Cellular Senescence , Humans , Neuroendocrine Tumors/pathology , Pituitary Gland/metabolism , Pituitary Neoplasms/pathology , Signal Transduction
7.
Int J Biol Macromol ; 211: 639-652, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35569680

ABSTRACT

Polymeric hydrogels are increasingly considered as scaffolds for tissue engineering due to their extraordinary resemblance with the extracellular matrix (ECM) of many tissues. As cell adhesion is a key factor in regulating important cell functions, hydrogel scaffolds are often functionalized or loaded with a variety of bioactive molecules that can promote adhesion. Interesting biomimetic approaches exploit the properties of mussel-inspired recombinant adhesive proteins. In this work, we prepared hydrogel scaffolds with a 50%w mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), by a two-step physical gelation process, and we coated them with Perna viridis foot protein-5ß (Pvfp5ß). The mechanical and morphological properties of hydrogels were investigated both after conditioning with typical cell culture media and also after coating with the Pvfp5ß. The protein resulted strongly adsorbed onto the surface of the hydrogel and also able to penetrate in its interiors to a certain depth, mainly interacting with the kC component of the scaffold as resulted from the confocal analysis. Mouse embryonic fibroblasts NIH-3T3 were seeded on top of the hydrogels and cultured up to two weeks. The role of Pvfp5ß in promoting cell adhesion, spreading and colonization of the scaffold was demonstrated.


Subject(s)
Fibroblasts , Polyvinyl Alcohol , Animals , Carrageenan/metabolism , Cell Adhesion/physiology , Fibroblasts/metabolism , Hydrogels/metabolism , Hydrogels/pharmacology , Mice , Polyvinyl Alcohol/metabolism , Recombinant Proteins/metabolism , Tissue Engineering/methods , Tissue Scaffolds
8.
Mater Sci Eng C Mater Biol Appl ; 131: 112545, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857257

ABSTRACT

Cartilage or bone regeneration approaches based on the direct injection of mesenchymal stem cells (MSCs) at the lesion site encounter several challenges, related to uncontrolled cell spreading and differentiation, reduced cell viability and poor engrafting. This work presents a simple and versatile strategy based on the synergic combination of in-situ forming hydrogels and spheroids of adipose stem cells (SASCs) with great potential for minimally invasive regenerative interventions aimed to threat bone and cartilage defects. Aqueous dispersions of partially degalactosylated xyloglucan (dXG) are mixed with SASCs derived from liposuction and either a chondroinductive or an osteoinductive medium. The dispersions rapidly set into hydrogels when temperature is brought to 37 °C. The physico-chemical and mechanical properties of the hydrogels are controlled by polymer concentration. The hydrogels, during 21 day incubation at 37 °C, undergo significant structural rearrangements that support cell proliferation and spreading. In formulations containing 1%w dXG cell viability increases up to 300% for SASCs-derived osteoblasts and up to 1000% for SASCs-derived chondrocytes if compared with control 2D cultures. The successful differentiation into the target cells is supported by the expression of lineage-specific genes. Cell-cell and cell-matrix interactions are also investigated. All formulations resulted injectable, and the incorporated cells are fully viable after injection.


Subject(s)
Hydrogels , Xylans , Bone Regeneration , Cartilage , Cell Differentiation , Glucans , Stem Cells
9.
Regen Biomater ; 8(5): rbab040, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34386265

ABSTRACT

Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks. At a higher concentration, CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by small-amplitude oscillatory shear rheological measurements and compression tests at different CXG/PA-H3 ratios. A preliminary biological evaluation has been carried out both in vitro with HaCat cells and in vivo in a mouse model.

10.
Int J Biol Macromol ; 164: 2818-2830, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32853619

ABSTRACT

Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process.


Subject(s)
Antioxidants/pharmacology , Bryopsida/chemistry , Carrageenan/chemistry , Fibroblasts/cytology , Plant Extracts/pharmacology , Sepharose/chemistry , Animals , Antioxidants/chemistry , Bandages , Biomechanical Phenomena , Cell Survival , Elasticity , Fibroblasts/drug effects , Fibroblasts/metabolism , Methylgalactosides , Mice , NIH 3T3 Cells , Plant Extracts/chemistry
11.
Front Immunol ; 11: 581, 2020.
Article in English | MEDLINE | ID: mdl-32528461

ABSTRACT

Non-resolving lung inflammation and Pseudomonas aeruginosa infections are the underlying cause of morbidity and mortality in cystic fibrosis (CF). The endogenous lipid mediator resolvin (Rv) D1 is a potent regulator of resolution, and its roles, actions, and therapeutic potential in CF are of interest. Here, we investigated actions and efficacy of RvD1 in preclinical models of cystic fibrosis. Cftr knockout mice with chronic P. aeruginosa lung infection were treated with RvD1 to assess differences in lung bacterial load, inflammation, and tissue damage. Cells from volunteers with CF were treated with RvD1 during ex vivo infection with P. aeruginosa, and effects on phagocytosis and inflammatory signaling were determined. In CF mice, RvD1 reduced bacterial burden, neutrophil infiltration, and histological signs of lung pathology, improving clinical scores of diseases. Mechanistically, RvD1 increased macrophage-mediated bacterial and leukocyte clearance in vivo. The clinical significance of these findings is supported by actions in primary leukocytes and epithelial cells from volunteers with CF where RvD1 enhanced P. aeruginosa phagocytosis and reduced genes and proteins associated to NF-κB activation and leukocyte infiltration. Concentration of RvD1 in sputum from patients with CF was also inversely correlated to those of cytokines and chemokines involved in CF lung pathology. These findings demonstrate efficacy of RvD1 in enhancing resolution of lung inflammation and infections and provide proof of concept for its potential as a prototypic novel pro-resolutive therapeutic approach for CF.


Subject(s)
Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Docosahexaenoic Acids/pharmacology , Pneumonia/immunology , Pseudomonas Infections , Animals , Cystic Fibrosis/pathology , Humans , Mice , Mice, Knockout , Neutrophil Infiltration/drug effects , Phagocytosis/drug effects , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa
12.
Int J Biol Macromol ; 149: 309-319, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31987942

ABSTRACT

Injectable, in-situ forming kefiran gels have been developed for potential applications as implantable drug delivery devices or scaffolds for tissue regeneration. Concentrated solutions (4, 5 and 6%w) of kefiran, extracted from kefir grains, have been assessed in term of viscosity and injectability through G26 syringe needles, and for their ability to undergo gelation upon mixing with different alcohols. Propylene glycol (PG) has been selected as gelling agent because it ensures homogenous gelation in relatively short times (from few minutes up to 6 h). The investigation of the rheological behavior of kefiran/PG gels varying polymer concentration and temperature (25 °C and 37 °C) has provided interesting hints to support a possible gelation mechanism that accounts also for the observed influence of the alcohol type. Finally, the study of kefiran/PG gels has been complemented with the investigation on selected formulations of the swelling/degradation behavior upon immersion in isotonic buffer solution for up to 40 days at 37 °C; of the ability of the gels to retain and/or release two model molecules; and within vitro cell viability and cytotoxicity tests, to support the absence of toxic effects on cells induced by direct contact with the gels or by leached components from these gels.


Subject(s)
Drug Delivery Systems , Hydrogels/chemistry , Polysaccharides/chemistry , Alcohols/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hydrogels/pharmacology , Propylene Glycol/chemistry , Rheology
13.
Front Cell Dev Biol ; 7: 297, 2019.
Article in English | MEDLINE | ID: mdl-31824948

ABSTRACT

Krüppel-like factor 6 (KLF6) is a transcription factor involved in the regulation of several cellular processes. Regarding its role in tumorigenesis, KLF6 is considered a tumor suppressor. Numerous reports demonstrate its frequent genomic loss or down-regulation, implying a functional inactivation in a broad range of human cancers. Previous work from our laboratory showed that the down-regulation of KLF6 expression in normal fibroblasts leads to cellular transformation, while its ectopic expression interferes with the oncogenic transformation triggered by activated Ras through a cell cycle arrest. We hypothesize that the growth suppressor activity of KLF6 may involve the induction of cellular senescence thereby helping to prevent the proliferation of cells at risk of neoplastic transformation. Here, we explored the association of KLF6 up-regulation in two different cellular senescence scenarios. We found that KLF6 silencing bypasses both oxidative and oncogene-induced senescence. In this context, KLF6 expression per se was capable to trigger cellular senescence in both normal and tumoral contexts. As such, the findings presented in this report provide insights into a potential mechanism by which KLF6 may play a suppressing role of uncontrolled or damaged cell proliferation.

14.
G Ital Nefrol ; 36(2)2019 Apr.
Article in Italian | MEDLINE | ID: mdl-30983178

ABSTRACT

Renal and hepatic cysts infections are among the most important infectious complications of ADPKD and often require hospitalization. Liver cysts are even more complex than renal cysts and their diagnosis and treatment are quite controversial. We report the case of a 58-year-old patient with ADPKD undergoing peritoneal dialysis treatment. He presented fever and severe asthenia and was diagnosed with a hepatic cyst infection. Given the presence of the peritoneal catheter, and in order to facilitate the targeted treatment of the infection, we administered antibiotics (ceftazidime and teicoplanin) in the bags used for peritoneal dialysis exchanges for 4 weeks, obtaining the complete disappearance of symptoms and laboratory and ultrasound alterations. Intraperitoneal antibiotics administration in the treatment of infected hepatic cysts represents an effective and safe therapeutic alternative, never described in literature so far.


Subject(s)
Bacterial Infections/complications , Cysts/etiology , Liver Diseases/etiology , Polycystic Kidney, Autosomal Dominant/complications , Renal Dialysis , Anti-Bacterial Agents/administration & dosage , Bacterial Infections/diagnostic imaging , Bacterial Infections/drug therapy , Ceftazidime/administration & dosage , Cysts/diagnostic imaging , Cysts/drug therapy , Humans , Infusions, Parenteral , Liver Diseases/diagnostic imaging , Liver Diseases/drug therapy , Male , Middle Aged , Renal Insufficiency, Chronic/therapy , Teicoplanin/administration & dosage
15.
Int J Biol Macromol ; 121: 784-795, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342149

ABSTRACT

Crosslinked xyloglucan-poly(vinyl alcohol) based hydrogel films are interesting materials for wound healing applications. This work focuses on the hydrolytic degradation and consequent morphological modification of a XG-PVA film and on its interaction with cells, blood, bacteria. Biocompatibility of the film was assessed in vitro by investigating different aspects, such as cell viability, oxidative stress level, mitochondrial dysfunction and specific stress biomarkers. Partial adhesiveness was demonstrated by performing different attaching assays and phalloidin staining. Hemocompatibility of XG-PVA film after interaction with blood was evaluated by using a multi-parametric approach, including human Red Blood Cells (RBC) count, hemolytic response and platelets activation. Thrombin and fibrinogen concentrations were examined as marker of the coagulation cascade. After direct contact with human blood and peripheral blood mononuclear cells (PBMC), no evidence of cell defense response was observed. Antimicrobial activity of XG-PVA film was tested against Escherichia coli (E.coli). XG-PVA film promotes bacterial retentivity and provides mechanical protection against bacterial infiltration. After loading the film with ampicillin, an inhibitory E. coli growth zone was observed. All together these results indicate that the XG-PVA system is a promising material to be tested in vivo for wound healing applications.


Subject(s)
Glucans/chemistry , Glucans/pharmacology , Methylgalactosides/chemistry , Wound Healing/drug effects , Xylans/chemistry , Xylans/pharmacology , A549 Cells , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Hemostasis/drug effects , Humans , Hydrolysis , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects
16.
Data Brief ; 21: 1950-1953, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30510982

ABSTRACT

In wound dressing applications, exudate absorption and retention are important properties. The data presented here assess the ability of the crosslinked xyloglucan-poly(vinyl alcohol) hydrogel films (XG-PVA), described in "Xyloglucan-based hydrogel films for wound dressing: Structure-property relationships" (Ajovalasit et al., 2018) [1] and "Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application" (Picone et al., 2019), to absorb and retain proteins. These properties were investigated by Comassie blue staining and electrophoresis of Fetal Serum Proteins.

17.
Endocr Relat Cancer ; 25(10): 837-852, 2018 10.
Article in English | MEDLINE | ID: mdl-29875136

ABSTRACT

In pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators CCND1 and CDK4. The HER2/ERK1/2 pathway is an attractive therapeutic target, but its intricate relations with other signaling modulators still need to be unraveled. Thus, we investigated possible cross-talk with TGFB signaling, which has not yet been studied in pituitary tumors. In tumoral GH3 cells, co-incubation with trastuzumab and TGFB1 significantly decreased cell proliferation, an effect accompanied by a reduction in ERK1/2 phosphorylation, an increase of SMAD2/3 activation. In addition, through immunoprecipitation assays, a diminution of SMAD2/3-ERK1/2 and an increase SMAD2/3-TGFBR1 interactions were observed when cells were co-incubated with trastuzumab and TGFB1. These findings indicate that blocking HER2 by trastuzumab inhibited pituitary tumor growth and modulated HER2/ERK1/2 signaling and consequently the anti-mitogenic TGFB1/TBRs/SMADs cascade. The imbalance between HER2 and TGFBRs expression observed in human adenomas and the response to trastuzumab on experimental tumor growth may make the HER2/ERK1/2 pathway an attractive target for future pituitary adenoma therapy.


Subject(s)
Adenoma/metabolism , Cell Proliferation/drug effects , Pituitary Neoplasms/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Trastuzumab/pharmacology , Adenoma/pathology , Adult , Cell Cycle/drug effects , Female , Humans , Male , Middle Aged , Phosphorylation , Pituitary Neoplasms/pathology , Young Adult
18.
Free Radic Biol Med ; 120: 41-55, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29548793

ABSTRACT

The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Pituitary Neoplasms/metabolism , Adaptation, Physiological/physiology , Animals , Antioxidants/metabolism , Energy Metabolism/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
19.
J Control Release ; 270: 23-36, 2018 01 28.
Article in English | MEDLINE | ID: mdl-29196041

ABSTRACT

Recent evidences suggest that insulin delivery to the brain can be an important pharmacological therapy for some neurodegenerative pathologies, including Alzheimer disease (AD). Due to the presence of the Blood Brain Barrier, a suitable carrier and an appropriate route of administration are required to increase the efficacy and safety of the treatment. Here, poly(N-vinyl pyrrolidone)-based nanogels (NG), synthetized by e-beam irradiation, alone and with covalently attached insulin (NG-In) were characterized for biocompatibility and brain delivery features in a mouse model. Preliminarily, the biodistribution of the "empty" nanocarrier after intraperitoneal (i.p.) injection was investigated by using a fluorescent-labeled NG. By fluorescence spectroscopy, SEM and dynamic light scattering analyses we established that urine clearance occurs in 24h. Histological liver and kidneys inspections indicated that no morphological alterations of tissues occurred and no immunological response was activated after NG injection. Furthermore, after administration of the insulin-conjugated nanogels (NG-In) through the intranasal route (i.n.) no alteration or immunogenic response of the nasal mucosa was observed, suggesting that the formulation is well tolerated in mouse. Moreover, an enhancement of NG-In delivery to the different brain areas and of its biological activity, measured as Akt activation levels, with reference to free insulin administration was demonstrated. Taken together, these results indicate that the synthesized NG-In enhances brain insulin delivery upon i.n. administration and strongly encourage its further evaluation as therapeutic agent against some neurodegenerative diseases.


Subject(s)
Brain/metabolism , Drug Carriers/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Acrylates/administration & dosage , Acrylates/pharmacokinetics , Administration, Intranasal , Animals , Drug Carriers/pharmacokinetics , Gels , Hypoglycemic Agents/pharmacokinetics , Insulin/pharmacokinetics , Male , Mice, Inbred C57BL , Nasal Mucosa/metabolism , Povidone/administration & dosage , Povidone/pharmacokinetics
20.
Carbohydr Polym ; 179: 262-272, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29111050

ABSTRACT

Thin xyloglucan-based hydrogel films have been synthetized and characterized in the prospect of producing wound dressings. Polyvinyl alcohol (PVA) and glycerol (Gro) were added to have an optimal combination of softness, conformability and resilience. Physical hydrogels have been transformed into permanent covalent hydrogels by reaction with glutaraldehyde (GA). Network structure-process-property relationships are discussed on the account of the results of several complementary characterizations: FTIR, rheology, thermal analysis, morphological analysis, moisture retention and swelling measurements. Selected formulations were also subjected to preliminary in vitro cytotoxicity tests. The physical and mechanical properties of some of the xyloglucan-based hydrogel films produced, combined with absence of cytotoxicity, make them suitable candidates for integration with sensors to monitor the wound healing process and further biological investigations in animal models.


Subject(s)
Bandages, Hydrocolloid , Glucans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Xylans/chemistry , A549 Cells , Cell Survival/drug effects , Glutaral/chemistry , Glycerol/chemistry , Humans , Hydrogels/chemical synthesis , Polyvinyl Alcohol/chemistry , Rheology , Structure-Activity Relationship , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...