Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(4): 867, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790961

ABSTRACT

This publisher's note contains corrections to Opt. Lett.47, 6201 (2022)10.1364/OL.471241.

2.
Nat Commun ; 14(1): 176, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635283

ABSTRACT

Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.

3.
Phys Rev Lett ; 127(3): 033901, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34328749

ABSTRACT

We report on a signal-to-noise ratio characterizing the generation of identical photon pairs of more than 4 orders of magnitude in a ring resonator system. Parasitic noise, associated with single-pump spontaneous four-wave mixing, is essentially eliminated by employing a novel system design involving two resonators that are linearly uncoupled but nonlinearly coupled. This opens the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode.

4.
Opt Lett ; 45(10): 2768-2771, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32412462

ABSTRACT

Time-energy entangled photon pairs are fundamental resources for quantum communication protocols since they are robust against environmental fluctuations in optical fiber networks. Pair sources based on spontaneous four-wave mixing in silicon microring resonators usually employ expensive external tunable lasers to compensate for ambient fluctuations; adopting self-pumped configurations, instead, lifts the need for such external source. Here we demonstrate the emission of time-energy entangled photon pairs at telecom wavelengths from a silicon self-pumped ring, obtaining a Franson interference fringe with 93.9%±0.9% visibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...