Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831427

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma. METHODS: EGFRvIII-specific CAR T cells were generated from various donors and analyzed for cytotoxicity, trogocytosis, and in vivo therapeutic activity against intracranial glioma. Tumor autophagy resulting from CAR T cell activity was evaluated in combination with an autophagy inducer (verteporfin) or inhibitor (bafilomycin A1). RESULTS: CAR T cell products derived from different donors induced markedly divergent levels of trogocytosis of tumor antigen as well as PD-L1 upon engaging target tumor cells correlating with variability in efficacy in mice. Pharmacological facilitation of CAR induced-autophagy with verteporfin inhibits trogocytic expression of tumor antigen on CARs and increases CAR persistence and efficacy in mice. CONCLUSION: These data propose CAR-induced autophagy as a mechanism counteracting CAR-induced trogocytosis and provide a new strategy to innovate high-performance CARs through pharmacological facilitation of T cell-induced tumor death.

2.
Oncoimmunology ; 11(1): 2062827, 2022.
Article in English | MEDLINE | ID: mdl-35433114

ABSTRACT

Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70-90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.


Subject(s)
Aptamers, Nucleotide , Breast Neoplasms , Glioma , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/therapeutic use , Central Nervous System/metabolism , Female , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Tumor Microenvironment
3.
Clin Cancer Res ; 27(15): 4325-4337, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34031054

ABSTRACT

PURPOSE: The blood-brain barrier (BBB) inhibits adequate dosing/penetration of therapeutic agents to malignancies in the brain. Low-intensity pulsed ultrasound (LIPU) is a safe therapeutic method of temporary BBB disruption (BBBD) to enhance chemotherapeutic delivery to the tumor and surrounding brain parenchyma for treatment of glioblastoma. EXPERIMENTAL DESIGN: We investigated if LIPU could enhance therapeutic efficacy of anti-PD-1 in C57BL/6 mice bearing intracranial GL261 gliomas, epidermal growth factor receptor variant III (EGFRvIII) chimeric antigen receptor (CAR) T cells in NSG mice with EGFRvIII-U87 gliomas, and a genetically engineered antigen-presenting cell (APC)-based therapy producing the T-cell attracting chemokine CXCL10 in the GL261-bearing mice. RESULTS: Mice treated with anti-PD-1 and LIPU-induced BBBD had a median survival duration of 58 days compared with 39 days for mice treated with anti-PD-1, and long-term survivors all remained alive after contralateral hemisphere rechallenge. CAR T-cell administration with LIPU-induced BBBD resulted in significant increases in CAR T-cell delivery to the CNS after 24 (P < 0.005) and 72 (P < 0.001) hours and increased median survival by greater than 129%, in comparison with CAR T cells alone. Local deposition of CXCL10-secreting APCs in the glioma microenvironment with LIPU enhanced T-cell glioma infiltration during the therapeutic window (P = 0.004) and markedly enhanced survival (P < 0.05). CONCLUSIONS: LIPU increases immune therapeutic delivery to the tumor microenvironment with an associated increase in survival and is an emerging technique for enhancing novel therapies in the brain.


Subject(s)
Blood-Brain Barrier/radiation effects , Brain Neoplasms/therapy , Glioma/therapy , Immunotherapy , Ultrasonic Waves , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Treatment Outcome
4.
J Neurooncol ; 151(1): 65-73, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32112296

ABSTRACT

INTRODUCTION: Opening of the blood-brain barrier (BBB) by pulsed low intensity ultrasound has been developed during the last decade and is now recognized as a safe technique to transiently and repeatedly open the BBB. This non- or minimally invasive technique allows for a targeted and uniform dispersal of a wide range of therapeutic substances throughout the brain, including immune cells and antibodies. METHODS: In this review article, we summarize pre-clinical studies that have used BBB-opening by pulsed low intensity ultrasound to enhance the delivery of immune therapeutics and effector cell populations, as well as several recent clinical studies that have been initiated. Based on this analysis, we propose immune therapeutic strategies that are most likely to benefit from this strategy. The literature review and trial data research were performed using Medline/Pubmed databases and clinical trial registry www.clinicaltrials.gov . The reference lists of all included articles were searched for additional studies. RESULTS: A wide range of immune therapeutic agents, including small molecular weight drugs, antibodies or NK cells, have been safely and efficiently delivered to the brain with pulsed low intensity ultrasound in preclinical models, and both tumor control and increased survival have been demonstrated in different types of brain tumor models in rodents. Ultrasound-induced BBB disruption may also stimulate innate and cellular immune responses. CONCLUSIONS: Ultrasound BBB opening has just recently entered clinical trials with encouraging results, and the association of this strategy with immune therapeutics creates a new field of brain tumor treatment.


Subject(s)
Blood-Brain Barrier , Central Nervous System Neoplasms , Brain , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/therapy , Humans , Ultrasonic Waves , Ultrasonography
5.
Cancers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348707

ABSTRACT

MiRNAs can silence a wide range of genes, which may be an advantage for targeting heterogenous tumors like glioblastoma. Osteopontin (OPN) plays both an oncogenic role in a variety of cancers and can immune modulate macrophages. We conducted a genome wide profiling and bioinformatic analysis to identify miR-181a/b/c/d as potential miRNAs that target OPN. Luciferase assays confirmed the binding potential of miRNAs to OPN. Expression levels of miR-181a/b/c/d and OPN were evaluated by using quantitative real-time PCR and enzyme-linked immunosorbent assay in mouse and human glioblastomas and macrophages that showed these miRNAs were downregulated in Glioblastoma associated CD11b+ cells compared to their matched blood CD14b+ cells. miRNA mimicking and overexpression using lentiviruses showed that MiR-181a overexpression in glioblastoma cells led to decreased OPN production and proliferation and increased apoptosis in vitro. MiR-181a treatment of immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice.

6.
Clin Cancer Res ; 26(18): 4983-4994, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32605912

ABSTRACT

PURPOSE: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma. EXPERIMENTAL DESIGN: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination. The role of the immune system was evaluated using tumor rechallenge strategies, immune-incompetent backgrounds, immunofluorescence, immune phenotyping of tumor-infiltrating immune cells (via flow cytometry), and NanoString gene expression analysis of 770 immune-related genes from immune cells, including those directly isolated from the tumor microenvironment. RESULTS: The combination of WP1066 and WBRT resulted in long-term survivors and enhanced median survival time relative to monotherapy in the GL261 glioma model (combination vs. control P < 0.0001). Immunologic memory appeared to be induced, because mice were protected during subsequent tumor rechallenge. The therapeutic effect of the combination was completely lost in immune-incompetent animals. NanoString analysis and immunofluorescence revealed immunologic reprograming in the CNS tumor microenvironment specifically affecting dendritic cell antigen presentation and T-cell effector functions. CONCLUSIONS: This study indicates that the combination of STAT3 inhibition and WBRT enhances the therapeutic effect against gliomas in the CNS by inducing dendritic cell and T-cell interactions in the CNS tumor.


Subject(s)
Brain Neoplasms/therapy , Cell Communication/immunology , Chemoradiotherapy/methods , Glioma/therapy , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Antigen Presentation/drug effects , Antigen Presentation/radiation effects , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Communication/drug effects , Cell Communication/radiation effects , Cell Line, Tumor/ultrastructure , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/radiation effects , Disease Models, Animal , Glioma/immunology , Glioma/pathology , Humans , Immunologic Memory/drug effects , Mice , Pyridines/administration & dosage , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/radiation effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Tyrphostins/administration & dosage
7.
Clin Cancer Res ; 26(17): 4699-4712, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32554515

ABSTRACT

PURPOSE: Anti-programmed cell death protein 1 (PD-1) therapy has demonstrated inconsistent therapeutic results in patients with glioblastoma (GBM) including those with profound impairments in CD8 T-cell effector responses. EXPERIMENTAL DESIGN: We ablated the CD8α gene in BL6 mice and intercrossed them with Ntv-a mice to determine how CD8 T cells affect malignant progression in forming endogenous gliomas. Tumor-bearing mice were treated with PD-1 to determine the efficacy of this treatment in the absence of T cells. The tumor microenvironment of treated and control mice was analyzed by IHC and FACS. RESULTS: We observed a survival benefit in immunocompetent mice with endogenously arising intracranial glioblastomas after intravenous administration of anti-PD-1. The therapeutic effect of PD-1 administration persisted in mice even after genetic ablation of the CD8 gene (CD8-/-). CD11b+ and Iba1+ monocytes and macrophages were enriched in the glioma microenvironment of the CD8-/- mice. The macrophages and microglia assumed a proinflammatory M1 response signature in the setting of anti-PD-1 blockade through the elimination of PD-1-expressing macrophages and microglia in the tumor microenvironment. Anti-PD-1 can inhibit the proliferation of and induce apoptosis of microglia through antibody-dependent cellular cytotoxicity, as fluorescently labeled anti-PD-1 was shown to gain direct access to the glioma microenvironment. CONCLUSIONS: Our results show that the therapeutic effect of anti-PD-1 blockade in GBM may be mediated by the innate immune system, rather than by CD8 T cells. Anti-PD-1 immunologically modulates innate immunity in the glioma microenvironment-likely a key mode of activity.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor-Associated Macrophages/drug effects , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor/transplantation , Disease Models, Animal , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunity, Innate/drug effects , Macrophage Activation/drug effects , Mice , Mice, Transgenic , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
8.
NPJ Breast Cancer ; 6: 12, 2020.
Article in English | MEDLINE | ID: mdl-32352029

ABSTRACT

The molecular processes by which some human ductal carcinoma in situ (DCIS) lesions advance to the more aggressive form, while others remain indolent, are largely unknown. Experiments utilizing a patient-derived (PDX) DCIS Mouse INtraDuctal (MIND) animal model combined with ChIP-exo and RNA sequencing revealed that the formation of protein complexes between B Cell Lymphoma-9 (BCL9), phosphoserine 727 STAT3 (PS-727-STAT3) and non-STAT3 transcription factors on chromatin enhancers lead to subsequent transcription of key drivers of DCIS malignancy. Downregulation of two such targets, integrin ß3 and its associated metalloproteinase, MMP16, resulted in a significant inhibition of DCIS invasive progression. Finally, in vivo targeting of BCL9, using rosemary extract, resulted in significant inhibition of DCIS malignancy in both cell line and PDX DCIS MIND animal models. As such, our studies provide compelling evidence for future testing of rosemary extract as a chemopreventive agent in breast cancer.

9.
J Neurooncol ; 145(3): 429-439, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31686330

ABSTRACT

BACKGROUND: Non-viral manufacturing of CAR T cells via the Sleeping Beauty transposon is cost effective and reduces the risk of insertional mutagenesis from viral transduction. However, the current gold standard methodology requires ex vivo numerical expansion of these cells on artificial antigen-presenting cells (AaPCs) for 4 weeks to generate CAR T cells of presumed sufficient quantity and function for clinical applications. METHOD: We engineered EGFRvIII-specific CAR T cells and monitored phenotypic changes throughout their ex vivo manufacturing. To reduce the culture time required to generate the CAR T-cell population, we selected for T cells in peripheral blood mononuclear cells prior to CAR modification (to eliminate the competing NK cell population). RESULTS: While we found increased expression of exhaustion markers (such as PD-1, PD-L1, TIM-3, and LAG-3) after 2 weeks in culture, whose levels continued to rise over time, we were able to generate a CAR+ T-cell population with comparable CAR expression and cell numbers in 2 weeks, thereby reducing manufacturing time by 50%, with lower expression of immune exhaustion markers. The CAR T cells manufactured at 2 weeks showed superior therapeutic efficacy in mice bearing established orthotopic EGFRvIII+ U87 gliomas. CONCLUSION: These findings demonstrate a novel, rapid method to generate CAR T cells by non-viral modification that results in CAR T cells superior in phenotype and function and further emphasizes that careful monitoring of CAR T-cell phenotype prior to infusion is critical for generating an optimal CAR T-cell product with full antitumor potential.


Subject(s)
ErbB Receptors/immunology , Glioma , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Transfection/methods , Animals , Antigens, Neoplasm/immunology , Humans , Mice , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...