Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 147(10): 2264-2271, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35510656

ABSTRACT

Kynurenic acid is a by-product of tryptophan metabolism in humans, with abnormal levels indicative of disease. There is a need for water-soluble receptors that selectively bind kynurenic acid, allowing for detection and quantification. We report here the high-affinity binding of kynurenic acid in aqueous media to a resorcinarene salt receptor decorated with four flexible naphthalene groups at the upper rim. Experimental results from 1H NMR, isothermal titration calorimetry, and electronic absorption and fluorescence spectroscopies all support high-affinity binding and selectivity for kynurenic acid over tryptophan. The measured binding constant (K = 1.46 ± 0.21 × 105 M-1) is one order of magnitude larger than that observed with other resorcinarene receptors. The present host-guest system can be employed for sensory recognition of kynurenic acid. Computational studies reveal the key role of a series of cooperative attractive intra- and inter-molecular interactions contributing to an optimal binding process in this system.


Subject(s)
Calixarenes , Kynurenic Acid , Calixarenes/chemistry , Humans , Naphthalenes , Phenylalanine/analogs & derivatives , Tryptophan , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...