Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 347: 123746, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460585

ABSTRACT

Mitigating pharmaceutical pollution in the global environment is imperative, and tetracycline (TC) is a commonly utilized antibiotic in human and veterinary medicine. The persistent existence of TC highlights the necessity of establishing efficient measures to protect water systems and the environment from detrimental contaminants. Herein, a novel rhubarb seed waste-derived activated carbon-supported photocatalyst (WO3-ZnO/RUAC) was synthesized by combining wet impregnation and ultrasonic methods. The activated carbon (AC) was obtained from rhubarb seed waste for the first time via chemical activation. The function of AC as an electron acceptor and in separating electron-hole pairs was illuminated by characterization analyses that included XRD, FTIR, XPS, SEM, TEM, PL, EIS, TPC, and UV-DRS. Using the response surface methodology-central composite design (RSM-CCD) technique, the synthesis parameters of the composite were systematically optimized. Under ideal conditions, with a TC concentration of 33 mg. L-1, pH of 4.57, irradiation time of 108 min, and catalyst dose of 0.85 g. L-1, the highest degradation efficiency of TC by this composite, achieved 96.5%, and it was reusable for five cycles. Subsequently, trapping tests and electron spin resonance (ESR) analysis were conducted, elucidating that •OH and •O2- radicals played pivotal roles in the photocatalytic degradation of TC. This research offers valuable insights into utilizing the AC-based photocatalyst to degrade pharmaceutical micropollutants effectively.


Subject(s)
Zinc Oxide , Anti-Bacterial Agents/chemistry , Catalysis , Charcoal , Light , Pharmaceutical Preparations , Tetracycline/chemistry , Tungsten , Zinc Oxide/chemistry
2.
Sci Rep ; 14(1): 1163, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216707

ABSTRACT

In this study, a split-type photocatalytic membrane reactor (PMR), incorporating suspended graphitic carbon nitride (g-C3N4) as photocatalyst and a layered polymeric composite (using polyamide, polyethersulfone and polysulfone polymers) as a membrane was fabricated to remove tetracycline (TC) from aqueous solutions as the world's second most used and discharged antibiotic in wastewater. The photocatalyst was synthesised from melamine by ultrasonic-assisted thermal polymerisation method and, along with the membrane, was characterised using various methods, including Brunauer-Emmett-Teller analysis (BET), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), and Ultraviolet-visible spectroscopy (UV-Vis). The PMR process was optimised, using Design-Expert software for tetracycline removal in terms of UV irradiation time, pH, photocatalyst loading, tetracycline concentration, and membrane separation iteration. It was revealed that a membrane-integrated reactor as a sustainable system could effectively produce clean water by simultaneous removal of tetracycline and photocatalyst from aqueous solution. The maximum removal of 94.8% was obtained at the tetracycline concentration of 22.16 ppm, pH of 9.78 with 0.56 g/L of photocatalyst in the irradiation time of 113.77 min after six times of passing membrane. The PMR system showed reasonable reusability by about a 25.8% drop in TC removal efficiency after seven cycles at optimal conditions. The outcomes demonstrate the promising performance of the proposed PMR system in tetracycline removal from water and suggest that it can be scaled as an effective approach for a sustainable supply of antibiotic-free clean water.

3.
Chemosphere ; 336: 139311, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37356592

ABSTRACT

Antibiotic pollution in water is a growing threat to public health and the environment, leading to the spread of antimicrobial-resistant bacteria. While photocatalysis has emerged as a promising technology for removing antibiotics from water, its limited efficiency in the visible light range remains a challenge. In this study, we present a novel method for the photocatalytic degradation of tetracycline, the second most commonly used antibiotic worldwide, using α-Fe2O3/TiO2 nanocomposites synthesized via rapid sonochemical and wet impregnation methods. The nanocomposites were characterised and tested using a range of techniques, including BET, TEM, FTIR, XRD, FESEM, EDS, and UV-Vis. The RSM-CCD method was also used to optimize the degradation process by varying four key variables (initial concentration, photocatalyst quantity, irradiation time, and pH). The resulting optimized conditions achieved a remarkable degradation rate of 97.5%. We also investigated the mechanism of photodegradation and the reusability of the photocatalysts, as well as the effect of light source operating conditions. Overall, the results demonstrate the effectiveness of the proposed approach in degrading tetracycline in water and suggest that it may be a promising, eco-friendly technology for the treatment of water contaminated with antibiotics.


Subject(s)
Wastewater , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/radiation effects , Tetracycline , Anti-Bacterial Agents , Titanium , Water
4.
Materials (Basel) ; 16(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176408

ABSTRACT

Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.

5.
Environ Res ; 223: 115484, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36775091

ABSTRACT

The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Bentonite/chemistry , Chlorides , Ecosystem , Thermodynamics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared
6.
Environ Sci Pollut Res Int ; 29(45): 68600-68614, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35543781

ABSTRACT

Ammonia is one of the major pollutants of water resources, posing a serious threat to human health and the environment. Titania nanoparticles were used to examine the photocatalytic degradation of ammonia from an aqueous solution in this study. Titania nanoparticles (NPs) were first synthesized via the sol-gel method, then characterized using XRD, FTIR, DLS, EDX, FE-SEM, and TEM analyses. Four effective parameters (pH, initial concentration of pollutant, catalyst dosage, and irradiation time) for photocatalytic degradation were explored using Design-Expert Software. The greatest photocatalytic activity of titania NPs was found in optimal conditions, according to the findings (97%). The optimum amounts of catalyst dosage, initial pollutant concentration, irradiation time, and pH were obtained at 0.3 g/l, 1500 mg/l, 120 min, and 12, respectively. Furthermore, studies revealed that pH was the most efficient variable in comparison with others and that increasing the pH value from 8 to 12 boosted ammonia removal from 40 to 97%. NPs showed high stability as the ammonia removal decreased from 96.96% to 65% after four cycles. Generally, this research has created a precedent for the development of morphology-dependent photocatalysts for the degradation of organic contaminants.


Subject(s)
Environmental Pollutants , Nanoparticles , Water Pollutants, Chemical , Ammonia , Catalysis , Humans , Light , Titanium , Ultraviolet Rays , Water Pollutants, Chemical/chemistry
7.
Environ Sci Pollut Res Int ; 26(30): 31328-31343, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31471851

ABSTRACT

1,2-Dichloroethane is one of the most hazardous environmental pollutants in wastewaters. It is mainly used to produce vinyl chloride monomer, the major precursor for PVC production. It is determined to be a probable human carcinogen and has been listed as a priority pollutant by the United States Environmental Protection Agency. Due to high chemical stability and low biodegradability of 1,2-dichloroethane, heterogeneous photocatalysis was used for degradation of this chlorinated hydrocarbon. PAni-TiO2 nanocomposite was synthesized by in situ deposition oxidative polymerization method and immobilized on glass beads by a modified dip coating and heat attachment method. The characteristics of synthesized PAni-TiO2 nanoparticles were confirmed using the results of morphology tests including Fourier-transform infrared spectra, X-ray diffraction patterns, particle size analysis, UV-Visible spectrophotometer, scanning electron microscope, and energy-dispersive X-ray spectroscopy. The performance of photocatalytic degradation of 1,2-dichloroethane using synthesized PAni-TiO2 nanocomposite in a designed and constructed pilot scale packed bed recirculating photocatalytic reactor under xenon light irradiation was investigated. The response surface methodology based on the central composite design was used to evaluate and optimize the effect of 1,2-dichloroethane concentration, residence time, pH, and coating mass as independent variables on the photocatalytic degradation of 1,2-dichloroethane as the response function. Results showed that actual and predicted results were well fitted with R2 of 0.9870, adjusted R2 of 0.9718, and predicted R2 of 0.9422. The optimum conditions for 1,2-dichloroethane photocatalytic degradation were the 1,2-dichloroethane concentration of 250 mg/L, the residence time of 240 min, pH of 5, and coating mass of 0.5 mg/cm2, which resulted in 88.84% photocatalytic degradation. Kinetic of the photocatalytic degradation at optimal condition follows the Langmuir-Hinshelwood first-order reaction with k = 0.0095 min-1 with R2 = 0.9455. Complete photocatalytic degradation of 1,2-DCE was achieved after 360 min.


Subject(s)
Ethylene Dichlorides/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Catalysis , Hydrogen-Ion Concentration , Light , Microscopy, Electron, Scanning , Oxidation-Reduction , Particle Size , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
8.
Environ Pollut ; 251: 783-791, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31121543

ABSTRACT

Removal of toxic formaldehyde from environmental waters is crucial to maintain ecosystem sustainability and human health. In this work, MIL-100(Fe) as a heterogeneous Fenton-like photocatalyst was used for the treatment of formaldehyde-contaminated water. The MIL-100(Fe) was synthesized via a facile solvothermal method and fully characterized using different spectroscopic and microscopic techniques. Based on the results, the formation of highly porous, crystalline, and stable visible light-responsive MIL-100(Fe) was confirmed. The Fenton-like photocatalytic efficiency of the MIL-100(Fe) toward the degradation of formaldehyde was then studied under visible light irradiation. For this purpose, the effect of initial concentration of formaldehyde, photocatalyst dose, H2O2 concentration, solution pH, and contact time on the removal efficiency of the MIL-100(Fe) was investigated using central composite design. The obtained results showed that the removal efficiency of the MIL-100(Fe) is significantly affected by the initial concentration of formaldehyde. A second-order model with R2 = 0.93 was developed for the system that was able to adequately predict the percentage removal of formaldehyde by the MIL-100(Fe) under different experimental conditions. According to the numerical optimization results, by using 1.13 g L-1 photocatalyst and 0.055 mol L-1 H2O2, 93% of formaldehyde can be removed after 119 min from an aqueous solution containing 700 mg L-1 of formaldehyde at pH 6.54.


Subject(s)
Environmental Restoration and Remediation/methods , Ferric Compounds/chemistry , Formaldehyde/metabolism , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Formaldehyde/adverse effects , Light , Respiratory Hypersensitivity/prevention & control
9.
Water Sci Technol ; 77(5-6): 1493-1504, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29595152

ABSTRACT

The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.


Subject(s)
Nanocomposites/chemistry , Photolysis , Sunlight , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Graphite/chemistry , Oxidation-Reduction , Oxides/chemistry , Waste Disposal, Fluid , Water
10.
J Environ Manage ; 213: 56-65, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29477851

ABSTRACT

Synthetic dyes are among the most important environmental pollutants in wastewaters. Consequently, elimination of the synthetic dyes from wastewaters using non-toxic materials and eco-friendly technologies has been of considerable interests. In this study, magnetically separable Ti-doped γ-Fe2O3 photocatalysts were synthesized for the removal of methylene blue (MB) from a dye-contaminated aqueous solution (as a model of dye-polluted wastewaters). Compared to the pristine γ-Fe2O3, the 1.78 v% Ti-doped γ-Fe2O3 significantly increased the adsorption of MB by 57% in the dark condition as a result of the improved BET surface area in this photocatalyst. Moreover, the contact time required for the photocatalytic degradation of MB by the 1.78 v% Ti-doped γ-Fe2O3 decreased due to the higher concentration of charge carriers in this photocatalyst than that of the pristine γ-Fe2O3. The effect of different experimental parameters on the adsorption property and photocatalytic activity of the 1.78 v% Ti-doped γ-Fe2O3 photocatalyst showed that the solution pH had a remarkable influence on the removal performance of this photocatalyst. Surface treatment of the 1.78 v% Ti-doped γ-Fe2O3 with sodium dodecyl sulfate (SDS) resulted in the formation of a negatively charged Ti-doped γ-Fe2O3/SDS photocatalyst, which showed a higher tendency for the adsorption and removal of MB than the untreated photocatalyst. Moreover, the MB removal efficiency of this photocatalyst was among the best performances that have been reported for the γ-Fe2O3-based photocatalysts. The synthesized photocatalysts were characterized by various techniques, and a plausible mechanism for the removal of MB from aqueous solutions by the Ti-doped γ-Fe2O3/SDS photocatalyst was purposed.


Subject(s)
Ferric Compounds , Methylene Blue , Nanotechnology , Adsorption , Coloring Agents , Photochemical Processes , Titanium
11.
Mater Sci Eng C Mater Biol Appl ; 33(6): 3173-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23706198

ABSTRACT

Hydrogen evolution of multi-walled nanotube (MWCNT)/micro-hybrid polymer composite, decorated with Ni nanoparticles through electroless deposition process is studied by the electrochemical method. Cyclic voltammetry (CV) is utilized to clearly study the electrochemical hydrogen storage/evolution behavior of the composite through a potential window ranging from -1.60 to +0.60 V (vs. Ag/AgCl). Hydrogen adsorption/desorption peaks are positioned at -1.52 and -0.05 V, respectively. Chronoamperometry is also applied to estimate active surface area (0.145 m(2)g(-1)) of the composite as well as the diffusion coefficient (3.4×10(-11) m(2) s(-1)) of adsorbed hydrogen process. According to the chrono-charge/discharge technique, the capacity of fabricated Ni-MWCNT/micro-hybrid composite is estimated to be 2.98 wt.% during charging for a certain time (40 min).


Subject(s)
Hydrogen/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Nickel/chemistry , Catalysis , Dielectric Spectroscopy , Electrochemical Techniques , Electrodes , Electrolytes/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...