Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Acta Biol Hung ; 66(4): 436-48, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26616375

ABSTRACT

Stem canker and black scurf of potato, caused by Rhizoctonia solani, can be serious diseases causing an economically significant damage. Biocontrol activity of Bacillus subtilis ATCC 11774 against the Rhizoctonia diseases of potato was investigated in this study. Chitinase enzyme was optimally produced by B. subtilis under batch fermentation conditions similar to those of the potato-growing soil. The maximum chitinase was obtained at initial pH 8 and 30 °C. In vitro, the lytic action of the B. subtilis chitinase was detected releasing 355 µg GlcNAc ml⁻¹ from the cell wall extract of R. solani and suggesting the presence of various chitinase enzymes in the bacterial filtrate. In dual culture test, the antagonistic behavior of B. subtilis resulted in the inhibition of the radial growth of R. solani by 48.1% after 4 days. Moreover, the extracted B. subtilis chitinase reduced the growth of R. solani by 42.3% when incorporated with the PDA plates. Under greenhouse conditions, application of a bacterial suspension of B. subtilis at 109 cell mL⁻¹ significantly reduced the disease incidence of stem canker and black scurf to 22.3 and 30%, respectively. In addition, it significantly improved some biochemical parameters, growth and tubers yield. Our findings indicate two points; firstly, B. subtilis possesses a good biocontrol activity against Rhizoctonia diseases of potato, secondly, the harmonization and suitability of the soil conditions to the growth and activity of B. subtilis guaranteed a high controlling capacity against the target pathogen.


Subject(s)
Bacillus subtilis/enzymology , Biological Control Agents , Chitinases/biosynthesis , Plant Diseases/prevention & control , Rhizoctonia/pathogenicity , Solanum tuberosum/microbiology , Plant Diseases/microbiology
2.
Braz J Microbiol ; 45(2): 743-56, 2014.
Article in English | MEDLINE | ID: mdl-25242966

ABSTRACT

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Subject(s)
Cellulase/isolation & purification , Cellulase/metabolism , Streptomyces/metabolism , Bacterial Typing Techniques , Carbohydrates/analysis , Cellulose/metabolism , Cluster Analysis , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Saccharum/metabolism , Sequence Analysis, DNA , Streptomyces/classification , Streptomyces/growth & development , Streptomyces/isolation & purification , Temperature , Time Factors
3.
Braz. j. microbiol ; 45(2): 743-751, Apr.-June 2014. ilus, tab
Article in English | LILACS | ID: lil-723113

ABSTRACT

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 ºC after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Subject(s)
Cellulase/isolation & purification , Cellulase/metabolism , Streptomyces/metabolism , Bacterial Typing Techniques , Cluster Analysis , Carbohydrates/analysis , Cellulose/metabolism , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , /genetics , Sequence Analysis, DNA , Saccharum/metabolism , Streptomyces/classification , Streptomyces/growth & development , Streptomyces/isolation & purification , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...