Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 14920, 2023 09 10.
Article in English | MEDLINE | ID: mdl-37691039

ABSTRACT

This study aimed to investigate the diagnostic performance of machine learning-based radiomics analysis to diagnose coronary artery disease status and risk from rest/stress Myocardial Perfusion Imaging (MPI) single-photon emission computed tomography (SPECT). A total of 395 patients suspicious of coronary artery disease who underwent 2-day stress-rest protocol MPI SPECT were enrolled in this study. The left ventricle myocardium, excluding the cardiac cavity, was manually delineated on rest and stress images to define a volume of interest. Added to clinical features (age, sex, family history, diabetes status, smoking, and ejection fraction), a total of 118 radiomics features, were extracted from rest and stress MPI SPECT images to establish different feature sets, including Rest-, Stress-, Delta-, and Combined-radiomics (all together) feature sets. The data were randomly divided into 80% and 20% subsets for training and testing, respectively. The performance of classifiers built from combinations of three feature selections, and nine machine learning algorithms was evaluated for two different diagnostic tasks, including 1) normal/abnormal (no CAD vs. CAD) classification, and 2) low-risk/high-risk CAD classification. Different metrics, including the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE), were reported for models' evaluation. Overall, models built on the Stress feature set (compared to other feature sets), and models to diagnose the second task (compared to task 1 models) revealed better performance. The Stress-mRMR-KNN (feature set-feature selection-classifier) reached the highest performance for task 1 with AUC, ACC, SEN, and SPE equal to 0.61, 0.63, 0.64, and 0.6, respectively. The Stress-Boruta-GB model achieved the highest performance for task 2 with AUC, ACC, SEN, and SPE of 0.79, 0.76, 0.75, and 0.76, respectively. Diabetes status from the clinical feature family, and dependence count non-uniformity normalized, from the NGLDM family, which is representative of non-uniformity in the region of interest were the most frequently selected features from stress feature set for CAD risk classification. This study revealed promising results for CAD risk classification using machine learning models built on MPI SPECT radiomics. The proposed models are helpful to alleviate the labor-intensive MPI SPECT interpretation process regarding CAD status and can potentially expedite the diagnostic process.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Myocardial Perfusion Imaging , Humans , Coronary Artery Disease/diagnostic imaging , Machine Learning , Tomography, Emission-Computed, Single-Photon , Male , Female
2.
Eur J Nucl Med Mol Imaging ; 50(4): 1034-1050, 2023 03.
Article in English | MEDLINE | ID: mdl-36508026

ABSTRACT

PURPOSE: Attenuation correction and scatter compensation (AC/SC) are two main steps toward quantitative PET imaging, which remain challenging in PET-only and PET/MRI systems. These can be effectively tackled via deep learning (DL) methods. However, trustworthy, and generalizable DL models commonly require well-curated, heterogeneous, and large datasets from multiple clinical centers. At the same time, owing to legal/ethical issues and privacy concerns, forming a large collective, centralized dataset poses significant challenges. In this work, we aimed to develop a DL-based model in a multicenter setting without direct sharing of data using federated learning (FL) for AC/SC of PET images. METHODS: Non-attenuation/scatter corrected and CT-based attenuation/scatter corrected (CT-ASC) 18F-FDG PET images of 300 patients were enrolled in this study. The dataset consisted of 6 different centers, each with 50 patients, with scanner, image acquisition, and reconstruction protocols varying across the centers. CT-based ASC PET images served as the standard reference. All images were reviewed to include high-quality and artifact-free PET images. Both corrected and uncorrected PET images were converted to standardized uptake values (SUVs). We used a modified nested U-Net utilizing residual U-block in a U-shape architecture. We evaluated two FL models, namely sequential (FL-SQ) and parallel (FL-PL) and compared their performance with the baseline centralized (CZ) learning model wherein the data were pooled to one server, as well as center-based (CB) models where for each center the model was built and evaluated separately. Data from each center were divided to contribute to training (30 patients), validation (10 patients), and test sets (10 patients). Final evaluations and reports were performed on 60 patients (10 patients from each center). RESULTS: In terms of percent SUV absolute relative error (ARE%), both FL-SQ (CI:12.21-14.81%) and FL-PL (CI:11.82-13.84%) models demonstrated excellent agreement with the centralized framework (CI:10.32-12.00%), while FL-based algorithms improved model performance by over 11% compared to CB training strategy (CI: 22.34-26.10%). Furthermore, the Mann-Whitney test between different strategies revealed no significant differences between CZ and FL-based algorithms (p-value > 0.05) in center-categorized mode. At the same time, a significant difference was observed between the different training approaches on the overall dataset (p-value < 0.05). In addition, voxel-wise comparison, with respect to reference CT-ASC, exhibited similar performance for images predicted by CZ (R2 = 0.94), FL-SQ (R2 = 0.93), and FL-PL (R2 = 0.92), while CB model achieved a far lower coefficient of determination (R2 = 0.74). Despite the strong correlations between CZ and FL-based methods compared to reference CT-ASC, a slight underestimation of predicted voxel values was observed. CONCLUSION: Deep learning-based models provide promising results toward quantitative PET image reconstruction. Specifically, we developed two FL models and compared their performance with center-based and centralized models. The proposed FL-based models achieved higher performance compared to center-based models, comparable with centralized models. Our work provided strong empirical evidence that the FL framework can fully benefit from the generalizability and robustness of DL models used for AC/SC in PET, while obviating the need for the direct sharing of datasets between clinical imaging centers.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods
3.
Clin Nucl Med ; 47(7): 606-617, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35442222

ABSTRACT

PURPOSE: The generalizability and trustworthiness of deep learning (DL)-based algorithms depend on the size and heterogeneity of training datasets. However, because of patient privacy concerns and ethical and legal issues, sharing medical images between different centers is restricted. Our objective is to build a federated DL-based framework for PET image segmentation utilizing a multicentric dataset and to compare its performance with the centralized DL approach. METHODS: PET images from 405 head and neck cancer patients from 9 different centers formed the basis of this study. All tumors were segmented manually. PET images converted to SUV maps were resampled to isotropic voxels (3 × 3 × 3 mm3) and then normalized. PET image subvolumes (12 × 12 × 12 cm3) consisting of whole tumors and background were analyzed. Data from each center were divided into train/validation (80% of patients) and test sets (20% of patients). The modified R2U-Net was used as core DL model. A parallel federated DL model was developed and compared with the centralized approach where the data sets are pooled to one server. Segmentation metrics, including Dice similarity and Jaccard coefficients, percent relative errors (RE%) of SUVpeak, SUVmean, SUVmedian, SUVmax, metabolic tumor volume, and total lesion glycolysis were computed and compared with manual delineations. RESULTS: The performance of the centralized versus federated DL methods was nearly identical for segmentation metrics: Dice (0.84 ± 0.06 vs 0.84 ± 0.05) and Jaccard (0.73 ± 0.08 vs 0.73 ± 0.07). For quantitative PET parameters, we obtained comparable RE% for SUVmean (6.43% ± 4.72% vs 6.61% ± 5.42%), metabolic tumor volume (12.2% ± 16.2% vs 12.1% ± 15.89%), and total lesion glycolysis (6.93% ± 9.6% vs 7.07% ± 9.85%) and negligible RE% for SUVmax and SUVpeak. No significant differences in performance (P > 0.05) between the 2 frameworks (centralized vs federated) were observed. CONCLUSION: The developed federated DL model achieved comparable quantitative performance with respect to the centralized DL model. Federated DL models could provide robust and generalizable segmentation, while addressing patient privacy and legal and ethical issues in clinical data sharing.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography
4.
Comput Biol Med ; 145: 105467, 2022 06.
Article in English | MEDLINE | ID: mdl-35378436

ABSTRACT

BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.


Subject(s)
COVID-19 , Lung Neoplasms , Algorithms , COVID-19/diagnostic imaging , Humans , Machine Learning , Prognosis , Retrospective Studies , Tomography, X-Ray Computed/methods
5.
Comput Biol Med ; 129: 104142, 2021 02.
Article in English | MEDLINE | ID: mdl-33260101

ABSTRACT

OBJECTIVES: It is important to subdivide Parkinson's disease (PD) into subtypes, enabling potentially earlier disease recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations in the number of patients and features. METHODS: We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative; 885 PD/163 healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature-reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of the samples. RESULTS: When using no radiomics features, the clusters were not robust to variations in features, whereas, utilizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as Hotelling's T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations. CONCLUSION: Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The PD subtypes provided were robust to the number of the subjects, and features.


Subject(s)
Parkinson Disease , Cross-Sectional Studies , Humans , Machine Learning , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Reproducibility of Results
6.
Phys Med ; 69: 233-240, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31918375

ABSTRACT

PURPOSE: It is vital to appropriately power clinical trials towards discovery of novel disease-modifying therapies for Parkinson's disease (PD). Thus, it is critical to improve prediction of outcome in PD patients. METHODS: We systematically probed a range of robust predictor algorithms, aiming to find best combinations of features for significantly improved prediction of motor outcome (MDS-UPDRS-III) in PD. We analyzed 204 PD patients with 18 features (clinical measures; dopamine-transporter (DAT) SPECT imaging measures), performing different randomized arrangements and utilizing data from 64%/6%/30% of patients in each arrangement for training/training validation/final testing. We pursued 3 approaches: i) 10 predictor algorithms (accompanied with automated machine learning hyperparameter tuning) were first applied on 32 experimentally created combinations of 18 features, ii) we utilized Feature Subset Selector Algorithms (FSSAs) for more systematic initial feature selection, and iii) considered all possible combinations between 18 features (262,143 states) to assess contributions of individual features. RESULTS: A specific set (set 18) applied to the LOLIMOT (Local Linear Model Trees) predictor machine resulted in the lowest absolute error 4.32 ± 0.19, when we firstly experimentally created 32 combinations of 18 features. Subsequently, 2 FSSAs (Genetic Algorithm (GA) and Ant Colony Optimization (ACO)) selecting 5 features, combined with LOLIMOT, reached an error of 4.15 ± 0.46. Our final analysis indicated that longitudinal motor measures (MDS-UPDRS-III years 0 and 1) were highly significant predictors of motor outcome. CONCLUSIONS: We demonstrate excellent prediction of motor outcome in PD patients by employing automated hyperparameter tuning and optimal utilization of FSSAs and predictor algorithms.


Subject(s)
Machine Learning , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Adult , Aged , Aged, 80 and over , Algorithms , Computer Simulation , Dopamine Plasma Membrane Transport Proteins/chemistry , Female , Humans , Male , Middle Aged , Pattern Recognition, Automated , Reproducibility of Results , Tomography, Emission-Computed, Single-Photon , Treatment Outcome
7.
Comput Biol Med ; 111: 103347, 2019 08.
Article in English | MEDLINE | ID: mdl-31284154

ABSTRACT

BACKGROUND: Given the increasing recognition of the significance of non-motor symptoms in Parkinson's disease, we investigate the optimal use of machine learning methods for the prediction of the Montreal Cognitive Assessment (MoCA) score at year 4 from longitudinal data obtained at years 0 and 1. METHODS: We selected n = 184 PD subjects from the Parkinson's Progressive Marker Initiative (PPMI) database (93 features). A range of robust predictor algorithms (accompanied with automated machine learning hyperparameter tuning) and feature subset selector algorithms (FSSAs) were selected. We utilized 65%, 5% and 30% of patients in each arrangement for training, training validation and final testing respectively (10 randomized arrangements). For further testing, we enrolled 308 additional patients. RESULTS: First, we employed 10 predictor algorithms, provided with all 93 features; an error of 1.83 ±â€¯0.13 was obtained by LASSOLAR (Least Absolute Shrinkage and Selection Operator - Least Angle Regression). Subsequently, we used feature subset selection followed by predictor algorithms. GA (Genetic Algorithm) selected 18 features; subsequently LOLIMOT (Local Linear Model Trees) reached an error of 1.70 ±â€¯0.10. DE (Differential evolution) also selected 18 features and coupled with Thiel-Sen regression arrived at a similar performance. NSGAII (Non-dominated sorting genetic algorithm) yielded the best performance: it selected six vital features, which combined with LOLIMOT reached an error of 1.68 ±â€¯0.12. Finally, using this last approach on independent test data, we reached an error of 1.65. CONCLUSION: By employing appropriate optimization tools (including automated hyperparameter tuning), it is possible to improve prediction of cognitive outcome. Overall, we conclude that optimal utilization of FSSAs and predictor algorithms can produce very good prediction of cognitive outcome in PD patients.


Subject(s)
Machine Learning , Mental Status and Dementia Tests/statistics & numerical data , Parkinson Disease , Adult , Aged , Aged, 80 and over , Algorithms , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Models, Statistical , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...