Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570085

ABSTRACT

Material properties, geometrical dimensions, and environmental conditions can greatly influence the characteristics of bistable composite laminates. In the current work, to understand how each input feature contributes to the curvatures of the stable equilibrium shapes of bistable laminates and the snap-through force to change these configurations, the correlation between these inputs and outputs is studied using a novel explainable artificial intelligence (XAI) approach called SHapley Additive exPlanations (SHAP). SHAP is employed to explain the contribution and importance of the features influencing the curvatures and the snap-through force since XAI models change the data into a form that is more convenient for users to understand and interpret. The principle of minimum energy and the Rayleigh-Ritz method is applied to obtain the responses of the bistable laminates used as the input datasets in SHAP. SHAP effectively evaluates the importance of the input variables to the parameters. The results show that the transverse thermal expansion coefficient and moisture variation have the most impact on the model's output for the transverse curvatures and snap-through force. The eXtreme Gradient Boosting (XGBoost) and Finite Element (FM) methods are also employed to identify the feature importance and validate the theoretical approach, respectively.

2.
Polymers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458306

ABSTRACT

For the last three decades, bistable composite laminates have gained publicity because of their outstanding features, including having two stable shapes and the ability to change these states. A common challenge regarding the analysis of these structures is the high computational cost of existing analytical methods to estimate their natural frequencies. In the current paper, a new methodology combining the Finite Element Method (FEM) and Multi-Objective Genetic Programming (MOGP) is proposed for the analysis of bistable composite structures, leading to some analytical relations derived to obtain the modal parameters of the shells. To achieve this aim, the data extracted from FEM, consisting of the ratio of the length to width (a/b) and the thickness (t) of the laminate, is split into Train and Validation, and Test, subsets. The former is used in MOGP, and four formulas are proposed for the prediction of the free vibration parameters of bistable laminates. The formulas are checked against the Test subset, and the statistical indices are calculated. An excellent performance is observed for all GP formulas, which indicates the reliability and accuracy of the predictions of these models. Parametric studies and sensitivity analyses are conducted to interpret the trend of input parameters in the GP models and the level of sensitivity of each natural frequency formula to the input parameters. These explicit mathematical expressions can be extended to the other bistable laminates to obtain their natural frequencies on the basis of their geometrical dimensions. The results are validated against the experimental data and verified against FEM outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...