Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 9(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276638

ABSTRACT

Rabies is endemic in South Africa and rabies cycles are maintained in both domestic and wildlife species. The significant number of canine rabies cases reported by the World Organization for Animal Health Reference Laboratory for Rabies at Onderstepoort suggests the need for increased research and mass dog vaccinations on specific targeted foci in the country. This study aimed to investigate the spatiotemporal distribution of animal rabies cases from 1998 to 2017 in northern South Africa and environmental factors associated with highly enzootic municipalities. A descriptive analysis was used to investigate temporal patterns. The Getis-Ord Gi statistical tool was used to exhibit low and high clusters. Logistic regression was used to examine the association between the predictor variables and highly enzootic municipalities. A total of 9580 specimens were submitted for rabies diagnosis between 1998 and 2022. The highest positive case rates were from companion animals (1733 cases, 59.71%), followed by livestock (635 cases, 21.88%) and wildlife (621 cases, 21.39%). Rabies cases were reported throughout the year, with the majority occurring in the mid-dry season. Hot spots were frequently in the northern and eastern parts of Limpopo and Mpumalanga. Thicket bush and grassland were associated with rabies between 1998 and 2002. However, between 2008 and 2012, cultivated commercial crops and waterbodies were associated with rabies occurrence. In the last period, plantations and woodlands were associated with animal rabies. Of the total number of municipalities, five consistently and repeatedly had the highest rabies prevalence rates. These findings suggest that authorities should prioritize resources for those municipalities for rabies elimination and management.

2.
Trop Med Infect Dis ; 8(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37104312

ABSTRACT

In South Africa, rabies cycles are sustained by both domestic and wildlife host species. Despite the fact that the majority of human rabies cases are associated with dog bite exposures, wildlife species can potentially transmit rabies virus (RABV) infection to humans. In July 2021, a honey badger (Mellivora capensis) from the Kromdraai area (Gauteng Province) bit a dog on a small farm. The following day the same honey badger attacked three adults in the area, with one of the victims requiring hospitalization for management of her injuries. The honey badger was subsequently shot and the carcass submitted to the Agricultural Research Council-Onderstepoort Veterinary Research (ARC-OVR) for RABV diagnosis. A positive rabies diagnosis was confirmed and phylogenetic analysis of the amplified glycoprotein gene of the rabies virus demonstrated the virus to be of dog origin.

3.
Trop Med Infect Dis ; 2(3)2017 Jul 09.
Article in English | MEDLINE | ID: mdl-30270884

ABSTRACT

The aetiological agent of rabies is a member of the Lyssavirus genus (Rhabdoviridae family, order Mononegavirales). The disease (rabies) is endemic in many parts of Asia and Africa and still remains an important public and veterinary health threat. In Nigeria, there is a dearth of information on the natural infection and/or exposure of bat species to lyssaviruses. Therefore, this study was undertaken to assess the prevalence of rabies virus (RABV) neutralizing antibodies in sera obtained from bats from the central Plateau and North-East Bauchi States in Nigeria. Two hundred serum samples were collected from Nigerian fruit bats from six different locations and tested for anti-RABV antibodies using a commercial blocking ELISA. Of the 200 bat serum samples collected, one batch consisting of 111 samples did not meet the validation criteria and hence was not included in the final analysis. Of the remaining 89, only three (3.4%) contained anti-lyssavirus antibodies, demonstrating a low prevalence of lyssavirus antibodies in the study population. In order to further understand the exposure of bat species to phylogroup II lyssaviruses (Lagos bat virus and Mokola virus), the same panel of samples will be tested for neutralizing antibodies to phylogroup II members, viruses that do not cross-neutralize with members of phylogroup I.

SELECTION OF CITATIONS
SEARCH DETAIL
...