Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 228(1): 305-319, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35907987

ABSTRACT

The role of angular gyrus (AG) in arithmetic processing remains a subject of debate. In the present study, we recorded from the AG, supramarginal gyrus (SMG), intraparietal sulcus (IPS), and superior parietal lobule (SPL) across 467 sites in 30 subjects performing addition or multiplication with digits or number words. We measured the power of high-frequency-broadband (HFB) signal, a surrogate marker for regional cortical engagement, and used single-subject anatomical boundaries to define the location of each recording site. Our recordings revealed the lowest proportion of sites with activation or deactivation within the AG compared to other subregions of the inferior parietal cortex during arithmetic processing. The few activated AG sites were mostly located at the border zones between AG and IPS, or AG and SMG. Additionally, we found that AG sites were more deactivated in trials with fast compared to slow response times. The increase or decrease of HFB within specific AG sites was the same when arithmetic trials were presented with number words versus digits and during multiplication as well as addition trials. Based on our findings, we conclude that the prior neuroimaging findings of so-called activations in the AG during arithmetic processing could have been due to group-based analyses that might have blurred the individual anatomical boundaries of AG or the subtractive nature of the neuroimaging methods in which lesser deactivations compared to the control condition have been interpreted as "activations". Our findings offer a new perspective with electrophysiological data about the engagement of AG during arithmetic processing.


Subject(s)
Mathematical Concepts , Problem Solving , Humans , Problem Solving/physiology , Parietal Lobe/physiology , Reaction Time/physiology , Brain Mapping , Magnetic Resonance Imaging
2.
Epilepsia ; 61(10): 2313-2320, 2020 10.
Article in English | MEDLINE | ID: mdl-32944953

ABSTRACT

OBJECTIVE: PCDH19-related epilepsy is characterized by a distinctive pattern of X-linked inheritance, where heterozygous females exhibit seizures and hemizygous males are asymptomatic. A cellular interference mechanism resulting from the presence of both wild-type and mutant PCDH19 neurons in heterozygous patients or mosaic carriers of PCDH19 variants has been hypothesized. We aim to investigate seizure susceptibility and progression in the Pchd19 mouse model. METHODS: We assessed seizure susceptibility and progression in the Pcdh19 mouse model using three acute seizure induction paradigms. We first induced focal, clonic seizures using the 6-Hz psychomotor test. Mice were stimulated with increasing current intensities and graded according to a modified Racine scale. We next induced generalized seizures using flurothyl or pentylenetetrazol (PTZ), both γ-aminobutyric acid type A receptor function inhibitors, and recorded latencies to myoclonic and generalized tonic-clonic seizures. RESULTS: Pcdh19 knockout and heterozygous females displayed increased seizure susceptibility across all current intensities in the 6-Hz psychomotor test, and increased severity overall. They also exhibited shorter latencies to generalized seizures following flurothyl, but not PTZ, seizure induction. Hemizygous males showed comparable seizure incidence and severity to their wild-type male littermates across all paradigms tested. SIGNIFICANCE: The heightened susceptibility observed in Pcdh19 knockout females suggests additional mechanisms other than cellular interference are at play in PCDH19-related epilepsy. Further experiments are needed to understand the variability in seizure susceptibility so that this model can be best utilized toward development of future therapeutic strategies for PCDH19-related epilepsy.


Subject(s)
Cadherins/deficiency , Cadherins/genetics , Psychomotor Performance/physiology , Seizures/genetics , Seizures/metabolism , Animals , Electroencephalography/methods , Female , Genetic Predisposition to Disease/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protocadherins , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...