Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38002418

ABSTRACT

Autologous micrografting technology (AMT®) involves the use of autologous micrografts to stimulate/enhance the repair of damaged tissue. This study assessed the efficacy and safety of the AMT® procedure in patients with early stages of knee osteoarthritis. Briefly, the AMT® procedure involved extraction of auricular cartilage, disaggregation using the Rigeneracons® SRT in 4.0 mL of saline solution, and injection of the disaggregated micrografts into the external femorotibial compartment area of the affected knee. Ten patients (4 men, 6 women; age range: 37-84 years) were included in the study. In all patients, there was a steady improvement in knee instability, pain, swelling, mechanical locking, stair climbing, and squatting at 1- and 6-months post-procedure. Improvement in mobility was observed as early as 3 weeks post-procedure in 2 patients. Significant improvements were seen in mean scores of all five subscales of Knee Injury and Osteoarthritis Outcome Score (KOOS [KOOS symptoms, KOOS pain, KOOS ADL, KOOS sport and recreation, and KOOS quality-of-life]) between pre-procedure and 1- and 6-months post-procedure (all p ≤ 0.05). Autologous auricular cartilage micrografts obtained by AMT® procedure (using Rigenera® technology) is an effective and safe protocol in the treatment of early stage knee osteoarthritis. These encouraging findings need to be validated in a larger patient population and in a randomized clinical trial (RCT).

2.
Drug Discov Today ; 28(3): 103486, 2023 03.
Article in English | MEDLINE | ID: mdl-36623795

ABSTRACT

Autism spectrum disorder (ASD) is a heterogenous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. Currently, ASD is diagnosed according to behavior-based criteria that overlook clinical and genomic heterogeneity, thus repeatedly resulting in failed clinical trials. Here, we summarize the scientific evidence pointing to the pressing need to create a precision medicine framework for ASD and other NDDs. We discuss the role of omics and systems biology to characterize more homogeneous disease subtypes with different underlying pathophysiological mechanisms and to determine corresponding tailored treatments. Finally, we provide recent initiatives towards tackling the complexity in NDDs for precision medicine and cost-effective drug discovery.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Precision Medicine , Genomics , Genome
3.
Front Psychiatry ; 12: 722378, 2021.
Article in English | MEDLINE | ID: mdl-34658958

ABSTRACT

Fragile X syndrome (FXS) is the most frequent monogenic cause of autism or intellectual disability, and research on its pathogenetic mechanisms has provided important insights on this neurodevelopmental condition. Nevertheless, after 30 years of intense research, efforts to develop treatments have been mostly unsuccessful. The aim of this review is to compile evidence from existing research pointing to clinical, genetic, and therapeutic response heterogeneity in FXS and highlight the need of implementing precision medicine-based treatments. We comment on the high genetic and phenotypic heterogeneity present in FXS, as a contributing factor to the difficulties found during drug development. Given that several clinical trials have showed a non-negligeable fraction of positive responders to drugs targeting core FXS symptoms, we propose that success of clinical trials can be achieved by tackling the underlying heterogeneity in FXS by accurately stratifying patients into drug-responder subpopulations. These precision medicine-based approaches, which can be first applied to well-defined monogenic diseases such as FXS, can also serve to define drug responder profiles based on specific biomarkers or phenotypic features that can associate patients with different genetic backgrounds to a same candidate drug, thus repositioning a same drug for a larger number of patients with NDDs.

4.
Mol Biol Evol ; 37(11): 3175-3187, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32589725

ABSTRACT

The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.


Subject(s)
Genome, Human , Roma/genetics , Europe , Gene Flow , Humans , Phylogeography , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...