Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065797

ABSTRACT

Solanum surattense Burm. f. is a significant member of the Solanaceae family, and the Solanum genus is renowned for its traditional medicinal uses and bioactive potential. This systematic review adheres to PRISMA methodology, analyzing scientific publications between 1753 and 2023 from B-on, Google Scholar, PubMed, Science Direct, and Web of Science, aiming to provide comprehensive and updated information on the distribution, ethnomedicinal uses, chemical constituents, and pharmacological activities of S. surattense, highlighting its potential as a source of herbal drugs. Ethnomedicinally, this species is important to treat skin diseases, piles complications, and toothache. The fruit was found to be the most used part of this plant (25%), together with the whole plant (22%) used to treat different ailments, and its decoction was found to be the most preferable mode of herbal drug preparation. A total of 338 metabolites of various chemical classes were isolated from S. surattense, including 137 (40.53%) terpenoids, 56 (16.56%) phenol derivatives, and 52 (15.38%) lipids. Mixtures of different parts of this plant in water-ethanol have shown in vitro and/or in vivo antioxidant, anti-inflammatory, antimicrobial, anti-tumoral, hepatoprotective, and larvicidal activities. Among the metabolites, 51 were identified and biologically tested, presenting antioxidant, anti-inflammatory, and antitumoral as the most reported activities. Clinical trials in humans made with the whole plant extract showed its efficacy as an anti-asthmatic agent. Mostly steroidal alkaloids and triterpenoids, such as solamargine, solanidine, solasodine, solasonine, tomatidine, xanthosaponin A-B, dioscin, lupeol, and stigmasterol are biologically the most active metabolites with high potency that reflects the new and high potential of this species as a novel source of herbal medicines. More experimental studies and a deeper understanding of this plant must be conducted to ensure its use as a source of raw materials for pharmaceutical use.

2.
Molecules ; 29(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893505

ABSTRACT

Cynometra iripa Kostel. is a Fabaceae species of mangrove used in traditional Ayurvedic medicine for treating inflammatory conditions. The present study aims to establish monographic botanical and chemical quality criteria for C. iripa leaf and bark as herbal substances and to evaluate their in vitro antioxidant potential. Macroscopic and microscopic qualitative and quantitative analyses, chemical LC-UV/DAD-ESI/MS profiling, and the quantification of key chemical classes were performed. Antioxidant activity was evaluated by DPPH and FRAP assays. Macroscopically, the leaf is asymmetrical with an emarginated apex and cuneate base. Microscopically, it shows features such as two-layered adaxial palisade parenchyma, vascular bundles surrounded by 3-6 layers of sclerenchyma, prismatic calcium oxalate crystals (5.89 ± 1.32 µm) along the fibers, paracytic stomata only on the abaxial epidermis (stomatal index-20.15), and non-glandular trichomes only on petiolules. The microscopic features of the bark include a broad cortex with large lignified sclereids, prismatic calcium oxalate crystals (8.24 ± 1.57 µm), and secondary phloem with distinct 2-5 seriated medullary rays without crystals. Chemical profile analysis revealed that phenolic derivatives, mainly condensed tannins and flavonoids, are the main classes identified. A total of 22 marker compounds were tentatively identified in both plant parts. The major compounds identified in the leaf were quercetin-3-O-glucoside and taxifolin pentoside and in the bark were B-type dimeric proanthocyanidins and taxifolin 3-O-rhamnoside. The total phenolics content was higher in the leaf (1521 ± 4.71 mg GAE/g dry weight), while the total flavonoids and condensed tannins content were higher in the bark (82 ± 0.58 mg CE/g and 1021 ± 5.51 mg CCE/g dry weight, respectively). A total of 70% of the hydroethanolic extracts of leaf and bark showed higher antioxidant activity than the ascorbic acid and concentration-dependent scavenging activity in the DPPH assay (IC50 23.95 ± 0.93 and 23.63 ± 1.37 µg/mL, respectively). A positive and statistically significant (p < 0.05) correlation between the phenol content and antioxidant activity was found. The results obtained will provide important clues for the quality control criteria of C. iripa leaf and bark, as well as for the knowledge of their pharmacological potential as possible anti-inflammatory agents with antioxidant activity.


Subject(s)
Antioxidants , Plant Bark , Plant Extracts , Plant Leaves , Plant Bark/chemistry , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Flavonoids/chemistry , Flavonoids/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Herbal Medicine/methods , Phenols/analysis , Phenols/chemistry , Proanthocyanidins/chemistry , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology
3.
Plants (Basel) ; 11(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559616

ABSTRACT

Cynometra L. is a Fabaceae genus that is widely distributed throughout the tropics, consisting of tropical forest trees with ecological and economic importance since they are used as food and herbal medicines by the populations of their natural habitats. Our goal is to provide a review of the research data concerning the potential of this botanical genus as a source of herbal medicines and secondary metabolites that are useful for human health. To that end, scientific databases, including PubMed, Science Direct, ISI Web of Science, Scopus, and Google Scholar, were searched using the following terms: Cynometra, medicine, chemical, biological activity, toxicity, and "AND" as the Boolean connector. Eleven Cynometra species (9.7%) were reported to be used in traditional medicine to treat different ailments. A total of 185 secondary metabolites of various chemical classes, mainly flavonoids and terpenoids, were identified in eight Cynometra species (7.1%). Vitexin was the only flavonoid identified as bioactive in the sequence of bioguided studies on this botanical genus. Ten species (8.8%) were submitted to in vitro and in vivo biological activity assays. The main evaluated activities were in vitro antioxidant, antimicrobial, cytotoxic, and in vivo anti-inflammatory activities, but no human clinical trials or safety data about this genus were found. Cynometra cauliflora and Cynometra ramiflora were the most studied species. The present work confirms the use of Cynometra species as a source of medicinal plants. However, more experimental studies must be conducted to better understand this botanical genus's usefulness as a source of raw materials for pharmaceutical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...