Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Toxins (Basel) ; 15(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37756009

ABSTRACT

Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.


Subject(s)
Drinking Water , Humans , Lakes , Ultraviolet Rays , Diffusion , Cyanobacteria Toxins
2.
Molecules ; 27(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364292

ABSTRACT

L-Dopa (LD), a substance used medically in the treatment of Parkinson's disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.


Subject(s)
Vicia faba , Chromatography, High Pressure Liquid/methods , Vicia faba/chemistry , Levodopa , Methanol
3.
AAPS PharmSciTech ; 23(7): 255, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109444

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent that has been used in the treatment of breast cancer. However, serious toxic effects have limited its use, mainly cardiotoxicity. To minimize the adverse effects, liposomal preparations containing DOX have been developed. These preparations can reach the target in the tumor region as well as bypass the resistance-related problems. An alternative to increased therapeutic efficacy may be the fusion of liposomes with exosomes released from tumor cells to facilitate membrane and fusion interactions, achieving greater cell uptake. Thus, the purpose of this study was the fusion of exosomes derived from breast tumor cells with long-circulating and pH-sensitive liposomes loading DOX (ExoSpHL-DOX) for the treatment of breast cancer. The mean diameter of ExoSpHL-DOX was 100.8 ± 7.8 nm, the polydispersity index was 0.122 ± 0.004, and the encapsulated DOX content was equal to 83.5 ± 2.5%. The fusion of exosomes with long-circulating and pH-sensitive liposomes was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, and nano-flow cytometry. The physicochemical characteristics of ExoSpHL-DOX were maintained for 60 days, at 4 °C. The study of the release of DOX from ExoSpHL-DOX in dilution media with different pH values showed the pH sensitivity characteristic of the nanosystem, since 96.6 ± 0.2% of DOX was released from ExoSpHL-DOX at pH 5.0, while at pH 7.4, the release was 70.1 ± 1.7% in the medium. The cytotoxic study against the breast cancer cell line demonstrated that ExoSpHL-DOX treatment significantly reduced the cancer cell viability.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Exosomes , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Exosomes/pathology , Female , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry
4.
Pharm Biol ; 60(1): 1317-1330, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35811507

ABSTRACT

CONTEXT: Solanaceae glycoalkaloids (SGAs) possess cardiomodulatory activity. OBJECTIVE: This study investigated the potential interaction between verapamil and glycoalkaloids. MATERIAL AND METHODS: The cardioactivity of verapamil and glycoalkaloids (α-solanine and α-chaconine) was tested in adult beetle (Tenebrio molitor) myocardium in vitro using microdensitometric methods. The myocardium was treated with pure substances and mixtures of verapamil and glycoalkaloids for 9 min with saline as a control. Two experimental variants were used: simultaneous application of verapamil and glycoalkaloids or preincubation of the myocardium with one of the compounds followed by perfusion with a verapamil solution. We used 9 × 10-6-5 × 10-5 M and 10-9-10-5 M concentration for verapamil and glycoalkaloids, respectively. RESULTS: Verapamil, α-solanine and α-chaconine showed cardioinhibitory activity with IC50 values equal to 1.69 × 10-5, 1.88 × 10-7 and 7.48 × 10-7 M, respectively. When the glycoalkaloids were applied simultaneously with verapamil, an antagonistic effect was observed with a decrease in the maximal inhibitory effect and prolongation of t50 and the recovery time characteristic of verapamil. We also confirmed the expression of two transcript forms of the gene that encodes the α1 subunit of L-type calcium channels in the myocardium and brain with equal transcription levels of both forms in the myocardium and significant domination of the shorter form in the brain of the insect species tested. DISCUSSION AND CONCLUSIONS: The results show that attention to the composition of the daily diet during therapy with various drugs is particularly important. In subsequent studies, the nature of interaction between verapamil and SGAs on the molecular level should be checked, and whether this interaction decreases the efficiency of cardiovascular therapy with verapamil in humans.


Subject(s)
Solanaceae , Solanine , Solanum tuberosum , Solanine/analogs & derivatives , Solanine/pharmacology , Verapamil/pharmacology
5.
Braz J Biol ; 82: e256261, 2022.
Article in English | MEDLINE | ID: mdl-35894349

ABSTRACT

Interest in antiviral plant species has grown exponentially and some have been reported to have anti-HIV properties. This research aims to perform the bio-guided phytochemical fractionation by antiretroviral activity of Lafoensia pacari stem barks. This in vitro experimental study involved the preparation of plant material, obtention of ethanolic extract, fractionation, purification, identification and quantification of fractions, acid-base extraction, nuclear magnetic resonance, HIV-1 RT inhibition test and molecular docking studies. From the bio-guided fractionation by the antiretroviral activity there was a higher activity in the acetanolic subfractions, highlighting the acetate subfraction - neutrals with 60.98% of RT inhibition and ellagic acid with 88.61% of RT inhibition and absence of cytotoxicity. The macrophage lineage cytotoxicity assay showed that the chloroform fraction was more toxic than the acetate fraction. The analysis of the J-resolved spectrum in the aromatic region showed a singlet at 7.48 and 6.93 ppm which was identified as ellagic acid and gallic acid, respectively. The 5TIQ enzyme obtained better affinity parameter with the ellagic acid ligand, which was confirmed by the HSQC-1H-13C spectra. Gallic acid was also favorable to form interaction with the 5TIQ enzyme, being confirmed through the HSQC-1H-13C spectrum. From the PreADMET evaluation it was found that ellagic acid is a promising molecule for its RT inhibition activity and pharmacokinetic and toxicity parameters.


Subject(s)
HIV Infections , Lythraceae , Acetates , Ellagic Acid/pharmacology , Gallic Acid/pharmacology , Lythraceae/chemistry , Molecular Docking Simulation , Plant Extracts/toxicity
6.
Cancers (Basel) ; 14(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35565241

ABSTRACT

Patients with clear cell renal cell carcinoma (ccRCC) have poor survival outcomes, especially if it has metastasized. It is of paramount importance to identify biomarkers in genomic data that could help predict the aggressiveness of ccRCC and its resistance to drugs. Thus, we conducted a study with the aims of evaluating gene signatures and proposing a novel one with higher predictive power and generalization in comparison to the former signatures. Using ccRCC cohorts of the Cancer Genome Atlas (TCGA-KIRC) and International Cancer Genome Consortium (ICGC-RECA), we evaluated linear survival models of Cox regression with 14 signatures and six methods of feature selection, and performed functional analysis and differential gene expression approaches. In this study, we established a 13-gene signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4, LIMCH1, LINC01732, OTX1, SAA1, SEMA3G, ZIC2) whose expression levels are able to predict distinct outcomes of patients with ccRCC. Moreover, we performed a comparison between our signature and others from the literature. The best-performing gene signature was achieved using the ensemble method Min-Redundancy and Max-Relevance (mRMR). This signature comprises unique features in comparison to the others, such as generalization through different cohorts and being functionally enriched in significant pathways: Urothelial Carcinoma, Chronic Kidney disease, and Transitional cell carcinoma, Nephrolithiasis. From the 13 genes in our signature, eight are known to be correlated with ccRCC patient survival and four are immune-related. Our model showed a performance of 0.82 using the Receiver Operator Characteristic (ROC) Area Under Curve (AUC) metric and it generalized well between the cohorts. Our findings revealed two clusters of genes with high expression (SAA1, OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR, HHLA2, LIMCH1, SEMA3G, DPP6, and FOXJ1) which are both correlated with poor prognosis. This signature can potentially be used in clinical practice to support patient treatment care and follow-up.

7.
Toxins (Basel) ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34564621

ABSTRACT

Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on the physiology of Galleria mellonella (Lepidoptera) that can be used as an alternative bioinsecticide. G. mellonella IV instar larvae were treated with S. nigrum extract and solasonine at different concentrations. The effects of extract and solasonine were evaluated analyzing changes in carbohydrate and amino acid composition in hemolymph by RP-HPLC and in the ultrastructure of the fat body cells by TEM. Both extract and solasonine changed the level of hemolymph metabolites and the ultrastructure of the fat body and the midgut cells. In particular, the extract increased the erythritol level in the hemolymph compared to control, enlarged the intracellular space in fat body cells, and decreased cytoplasm and lipid droplets electron density. The solasonine, tested with three concentrations, caused the decrease of cytoplasm electron density in both fat body and midgut cells. Obtained results highlighted the disturbance of the midgut and the fat body due to glycoalkaloids and the potential role of hemolymph ingredients in its detoxification. These findings suggest a possible application of glycoalkaloids as a natural insecticide in the pest control of G. mellonella larvae.


Subject(s)
Fat Body/drug effects , Hemolymph/drug effects , Insecticides , Moths , Plant Extracts , Solanaceous Alkaloids , Solanum nigrum/chemistry , Animals , Digestive System/drug effects , Digestive System/ultrastructure , Fat Body/ultrastructure , Hemolymph/metabolism , Insect Control , Larva/growth & development , Larva/metabolism , Larva/ultrastructure , Microscopy, Electron, Transmission , Moths/growth & development , Moths/metabolism , Moths/ultrastructure
8.
Toxins (Basel) ; 13(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562446

ABSTRACT

For thousands of years, Cannabis sativa has been utilized as a medicine and for recreational and spiritual purposes. Phytocannabinoids are a family of compounds that are found in the cannabis plant, which is known for its psychotogenic and euphoric effects; the main psychotropic constituent of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC). The pharmacological effects of cannabinoids are a result of interactions between those compounds and cannabinoid receptors, CB1 and CB2, located in many parts of the human body. Cannabis is used as a therapeutic agent for treating pain and emesis. Some cannabinoids are clinically applied for treating chronic pain, particularly cancer and multiple sclerosis-associated pain, for appetite stimulation and anti-emesis in HIV/AIDS and cancer patients, and for spasticity treatment in multiple sclerosis and epilepsy patients. Medical cannabis varies from recreational cannabis in the chemical content of THC and cannabidiol (CBD), modes of administration, and safety. Despite the therapeutic effects of cannabis, exposure to high concentrations of THC, the main compound that is responsible for most of the intoxicating effects experienced by users, could lead to psychological events and adverse effects that affect almost all body systems, such as neurological (dizziness, drowsiness, seizures, coma, and others), ophthalmological (mydriasis and conjunctival hyperemia), cardiovascular (tachycardia and arterial hypertension), and gastrointestinal (nausea, vomiting, and thirst), mainly associated with recreational use. Cannabis toxicity in children is more concerning and can cause serious adverse effects such as acute neurological symptoms (stupor), lethargy, seizures, and even coma. More countries are legalizing the commercial production and sale of cannabis for medicinal use, and some for recreational use as well. Liberalization of cannabis laws has led to increased incidence of toxicity, hyperemesis syndrome, lung disease cardiovascular disease, reduced fertility, tolerance, and dependence with chronic prolonged use. This review focuses on the potential therapeutic effects of cannabis and cannabinoids, as well as the acute and chronic toxic effects of cannabis use on various body systems.


Subject(s)
Cannabinoids/therapeutic use , Cannabis , Medical Marijuana/therapeutic use , Nervous System/drug effects , Plants, Toxic , Animals , Cannabinoids/adverse effects , Cannabinoids/isolation & purification , Cannabis/adverse effects , Humans , Marijuana Abuse/metabolism , Marijuana Abuse/physiopathology , Marijuana Abuse/psychology , Medical Marijuana/adverse effects , Nervous System/metabolism , Nervous System/physiopathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/psychology , Plants, Toxic/adverse effects , Receptors, Cannabinoid/drug effects , Receptors, Cannabinoid/metabolism , Signal Transduction
9.
Sci Rep ; 10(1): 19448, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173088

ABSTRACT

Organic waste is a rapidly increasing problem due to the growth of the agricultural production needed to meet global food demands. Development of sustainable waste management solutions is essential. Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) (BSF), larvae are voracious consumers of a wide range of organic materials ranging from fruits and vegetables to animal remains, and manure. Thanks to this ability and considering the larval high protein and lipid content, BSF larvae are a useful additive in animal feeds and biodiesel production. Unfortunately, the feasibility of using the black soldier fly as a tool for waste valorization and feed production has primarily been investigated at the benchtop scale. Thus, mobilization of current practices to an industrial scale is challenging because scaling up from small laboratory studies to large industrial studies is not necessarily linear. The goal of this study was to demonstrate the ability of the BSF to recycle organic waste at an industrial scale. To accomplish this goal, three organic waste streams were used (e.g., apples, bananas, and spent grain from a brewery) to test six diet treatments (1) apple, (2) banana, (3) spent grain, (4) apple and banana, (5) apple and spent grain, and (6) banana and spent grain. Working at scale of 10,000 BSF larvae life history traits, waste valorization, protein and lipid profiles were measured for each diet treatment. Differences were recorded across all variables, except substrate conversion, for larvae fed on fruit and spent grain (alone or with fruit). Growth rate significantly differed across treatments; larvae reared on spent grain grew twice as fast as those fed apples alone, but those reared on the apple and spent grain mixture produced twice as much insect biomass. However, it should be noted that larvae resulting from the apple diet contained 50% more fat than larvae fed the fruit and spent grain mixtures. Commonly-available organic wastes were successfully used at an industrial scale to produce BSF larvae that have the potential to substitute other sources of protein and lipids in different industrial applications. Industrialization efforts are encouraged to assess these impacts when integrating diverse ingredients into larval diets as a means to more precisely predict output, such as larval development time and final larval biomass.


Subject(s)
Animal Feed/analysis , Diptera/metabolism , Larva/metabolism , Nutrients/analysis , Recycling/methods , Waste Management/methods , Animals , Biomass , Diet , Diptera/growth & development , Edible Grain/metabolism , Edible Grain/parasitology , Fruit/metabolism , Fruit/parasitology , Larva/growth & development , Lipids/analysis , Manure/analysis , Manure/parasitology , Organic Chemicals/metabolism , Proteins/analysis , Vegetables/metabolism , Vegetables/parasitology
10.
Foods ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899742

ABSTRACT

Nitrate and nitrite as sodium or potassium salts are usually added to meat products to develop the characteristic flavor, to inhibit the growth of microorganisms (particularly Clostridium botulinum), and effectively control rancidity by inhibiting lipid oxidation. However, both nitrate and nitrite ions need to be monitored for ensuring the quality and safety of cured meats. In this work, for the first time the content of nitrite and nitrate ions in homogenized meat samples of baby foods was determined by a validated method based on ion chromatography (IC) coupled with conductivity detection. Recoveries of nitrate and nitrite ions in meat samples were not lower than 84 ± 6%. The detection limits of nitrate and nitrite were 0.08 mg L-1 and 0.13 mg L-1, respectively. Five commercial samples of homogenized meat, namely lamb, rabbit, chicken, veal, and beef, for infant feeding were investigated; while nitrite content was below the detection limit, nitrate ranged from 10.7 to 21.0 mg kg-1. The results indicated that nitrate contents were below the European (EU) fixed value of 200 mg kg-1, and an acceptable daily intake of 3.7 mg kg-1 was estimated.

13.
Anal Bioanal Chem ; 412(12): 3005-3015, 2020 May.
Article in English | MEDLINE | ID: mdl-32215688

ABSTRACT

Interest in targeted profiling of quercetin glycoconjugates occurring in edible foodstuffs continues to expand because of their recognized beneficial health effects. Quercetin derivatives encompass several thousands of chemically distinguishable compounds, among which there are several compounds with different glycosylations and acylations. Since reference standards and dedicated databases are not available, the mass spectrometric identification of quercetin glycoconjugates is challenging. A targeted liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) was applied for screening quercetin glycoconjugates in edible peperoni di Senise peppers (Capsicum annuum L.), protected by the European Union with the mark PGI (i.e., Protected Geographical Indication), and cultivated in Basilicata (Southern Italy). Chromatographic separation was accomplished by reversed-phase liquid chromatography (RPLC) using water/acetonitrile as the mobile phase and detection was performed on a linear ion trap mass spectrometer fitted with an electrospray ionization (ESI) source operating in negative ion mode. A correlation between experimental RP chromatographic retention time and those predicted by partition coefficients (log P) along with MS/MS data and an in-house developed database (named QUEdb) provided deep coverage for sixteen quercetin glycoconjugates. Among them, eleven quercetin glycoconjugates were already described in the literature and five were reported for the first time. These last acyl glycosidic quercetin derivatives were tentatively identified as quercetin-(galloyl-rhamnoside)-hexoside, [C34H33O20]- at m/z 761.1; quercetin-(sinapoyl-hexoside)-rhamnoside, [C38H39O20]- at m/z 815.4; quercetin-(galloyl-caffeoyl-hexoside)-rhamnoside, [C43H39O23]- at m/z 923.0; quercetin-(feruloyl-hexoside)-rhamnoside, [C37H37O19]- at m/z 785.1; and quercetin-(succinyl-rhamnoside)-rhamnoside, [C31H33O18]- at m/z 693.1. Graphical abstract.


Subject(s)
Capsicum/chemistry , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Glycosides/analysis , Quercetin/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Acylation
14.
J Sep Sci ; 43(5): 886-895, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31849166

ABSTRACT

Pharmaceuticals constitute one of the most important emerging classes of environmental pollutants. A three-phase solvent system of water, water containing 0.1% of formic acid and acetonitrile was successfully used to separate, by liquid chromatography with mass spectrometry (LC-MS), polarity-matched pharmaceuticals, that is, carbamazepine, clarithromycin, and erythromycin, as well as amoxicillin and metformin. Despite of polarity similarities, these pharmaceuticals were completely resolved in the analytical run time of 15 min. The optimized three-phase solvent system based-method was validated for the simultaneous analysis of six matched-polarity pharmaceuticals in wastewater samples. Good linearity (coefficient of determination more than 0.993) and precision (relative standard deviation less than 15.66%) were achieved. Recovery of analytes from the wastewater was between 0.70 and 1.18. Limits of detections ranged from 0.0001 to 0.5114 µg/L. No significant matrix effect, evaluated by post extraction addition, was observed in the electrospray ionization (ESI) source. Then, this methodology has been successfully applied to environmental study of pharmaceutical residues occurring in influent and effluent wastewater samples, from the main wastewater treatment plant in Potenza (Basilicata, Southern Italy).


Subject(s)
Amoxicillin/isolation & purification , Carbamazepine/isolation & purification , Clarithromycin/isolation & purification , Erythromycin/isolation & purification , Metformin/isolation & purification , Water Pollutants, Chemical/isolation & purification , Amoxicillin/chemistry , Carbamazepine/chemistry , Chromatography, Liquid , Clarithromycin/chemistry , Erythromycin/chemistry , Metformin/chemistry , Particle Size , Solvents/chemistry , Surface Properties , Tandem Mass Spectrometry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
15.
Front Microbiol ; 10: 2695, 2019.
Article in English | MEDLINE | ID: mdl-31849865

ABSTRACT

Many Burkholderia spp. produce in vitro secondary metabolites with relevant biological activities and potential practical applications. Burkholderia gladioli pv. agaricicola (Bga) possess promising biological activities regulated by N-Acyl homoserine lactones (N.AHLs) based quorum sensing (QS) mechanism. In the current study, N.AHLs-deficient (ICMP11096glad-I) and N.AHLs-complemented (ICMP11096glad-IR) mutants were constructed in which the gene coding for AHL synthase was inactivated by allelic exchange in glad I mutant strain. The aims of this research were to (i) assess the antagonistic activity of the wild type (WT) and the glad-I mutant of Bga against Bacillus megaterium (G+ve) and Escherichia coli (G-ve), (ii) screen their hydrolytic enzymes and hemolytic substances, (iii) monitor the pathogenic effect against Agaricus bisporus, and finally (iv) analyze the bioactive secondary metabolites produced by WT and mutant strain using high performance liquid chromatography (HPLC). Results showed that N.AHLs-deficient mutant exhibited high reduction of antagonistic activity against the tested microorganisms and notable reduction of chitinolytic, proteolytic and glucanolytic activities and complete absence of hemolytic activity, and the glad-IR complemented mutant was able to regain the major part of these activities. Furthermore, N.AHLs-deficient mutant strain was unable to degrade flesh cubes pseudo-tissues of A. bisporus. On the other hand, the virulence effect of complemented mutant was like to the parental WT strain. HPLC analysis revealed that some of the single components produced by WT strain were absent in N.AHLs-deficient mutant and others were highly reduced. The out-findings of the current research gave a spot into the regulatory role of N.AHLs and QS phenomenon in the biological activity of Bga bacterium.

16.
Toxins (Basel) ; 11(11)2019 11 11.
Article in English | MEDLINE | ID: mdl-31717922

ABSTRACT

The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.


Subject(s)
Alkaloids/pharmacology , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Herbivory , Neoplasms/pathology , Pest Control, Biological/methods , Alkaloids/isolation & purification , Animals , Bacteria/drug effects , Berberis/chemistry , Crops, Agricultural/parasitology , Fungi/drug effects , HeLa Cells , Humans , Microbial Sensitivity Tests , Viruses/drug effects
17.
Front Physiol ; 10: 715, 2019.
Article in English | MEDLINE | ID: mdl-31275155

ABSTRACT

The molecular bases of the host-parasitoid interactions in the biological system Acyrthosiphon pisum (Harris) (Homoptera, Aphididae) and Aphidius ervi (Haliday) (Hymenoptera, Braconidae) have been elucidated allowing the identification of a gamma-glutamyl transpeptidase, the active component of maternal venom secretion, and teratocytes, the embryonic parasitic factors responsible for host physiology regulation after parasitization. Teratocytes, cells deriving from the dissociation of the serosa, the parasitoid embryonic membrane, are responsible for extra-oral digestion of host tissues in order to provide a suitable nutritional environment for the development of parasitoid larvae. Teratocytes rapidly grow in size without undergoing any cell division, synthesize, and release in the host hemolymph two proteins: a fatty acid binding protein (Ae-FABP) and an enolase (Ae-ENO). Ae-FABP is involved in transport of fatty acids deriving from host tissues to the parasitoid larva. Ae-ENO is an extracellular glycolytic enzyme that functions as a plasminogen like receptor inducing its activation to plasmin. Both Ae-FABP and Ae-ENO lack their signal peptides, and they are released in the extracellular environment through an unknown secretion pathway. Here, we investigated the unconventional mechanism by which teratocytes release Ae-FABP and Ae-ENO in the extracellular space. Our results, obtained using immunogold staining coupled with TEM and western blot analyses, show that these two proteins are localized in vesicles released by teratocytes. The specific dimension of these vesicles and the immunodetection of ALIX and HSP70, two exosome markers, strongly support the hypothesis that these vesicles are exosomes.

18.
Front Physiol ; 10: 604, 2019.
Article in English | MEDLINE | ID: mdl-31191334

ABSTRACT

This study focuses on several aspects of communication strategies adopted by adults of the Mediterranean flat-headed root-borer Capnodis tenebrionis (Coleoptera: Buprestidae). Morphological studies on the structures involved in mate recognition and acceptance revealed the presence of porous areas in the pronota in both sexes. These areas were variable in shape and size, but proportionally larger in males. The presence of chaetic, basiconic, and coeloconic sensilla in the antennae of both males and females was verified. Bioassays revealed stereotyped rituals in males and the involvement of female pronotal secretions in mate recognition and acceptance. During the mating assays, the female's pronotum was covered by a biologically inert polymeric resin (DenFilTM), which prevented males from detecting the secretions and from completing the copulation ritual. The use of the resin allowed for the collection of chemical compounds. GC-MS analysis of the resin suggested it may be used to retain compounds from insect body surfaces and revealed sex-specific chemical profiles in the cuticles. Since adult C. tenebrionis may use volatile organic compounds (VOCs) emitted from leaves or shoots, the VOC emission profiles of apricot trees were characterized. Several volatiles related to plant-insect interactions involving fruit tree species of the Rosaceae family and buprestid beetles were identified. To improve understanding of how VOCs are perceived, candidate soluble olfactory proteins involved in chemoreception (odorant-binding proteins and chemosensory proteins) were identified using tissue and sex-specific RNA-seq data. The implications for chemical identification, physiological and ecological functions in intraspecific communication and insect-host interactions are discussed and potential applications for monitoring presented.

19.
Toxins (Basel) ; 11(5)2019 05 22.
Article in English | MEDLINE | ID: mdl-31121818

ABSTRACT

The usage of insects as model organisms is becoming more and more common in toxicological, pharmacological, genetic and biomedical research. Insects, such as fruit flies (Drosophila melanogaster), locusts (Locusta migratoria), stick insects (Baculum extradentatum) or beetles (Tenebrio molitor) are used to assess the effect of different active compounds, as well as to analyse the background and course of certain diseases, including heart disorders. The goal of this study was to assess the influence of secondary metabolites extracted from Solanaceae and Brassicaceae plants: Potato (Solanum tuberosum), tomato (Solanum lycopersicum), black nightshade (Solanum nigrum) and horseradish (Armoracia rusticana), on T. molitor beetle heart contractility in comparison with pure alkaloids. During the in vivo bioassays, the plants glycoalkaloid extracts and pure substances were injected at the concentration 10-5 M into T. molitor pupa and evoked changes in heart activity. Pure glycoalkaloids caused mainly positive chronotropic effects, dependant on heart activity phase during a 24-h period of recording. Moreover, the substances affected the duration of the heart activity phases. Similarly, to the pure glycoalkaloids, the tested extracts also mainly accelerated the heart rhythm, however S. tuberosum and S. lycopersicum extracts slightly decreased the heart contractions frequency in the last 6 h of the recording. Cardioacceleratory activity of only S. lycopersicum extract was higher than single alkaloids whereas S. tubersoum and S. nigrum extracts were less active when compared to pure alkaloids. The most cardioactive substance was chaconine which strongly stimulated heart action during the whole recording after injection. A. rusticana extract which is composed mainly of glucosinolates did not significantly affect the heart contractions. Obtained results showed that glycoalkaloids were much more active than glucosinolates. However, the extracts depending on the plant species might be more or less active than pure substances.


Subject(s)
Alkaloids/pharmacology , Armoracia/metabolism , Plant Extracts/pharmacology , Solanum/metabolism , Tenebrio/drug effects , Alkaloids/metabolism , Animals , Fruit/chemistry , Fruit/metabolism , Myocardial Contraction/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Pupa/drug effects , Pupa/physiology , Secondary Metabolism , Tenebrio/physiology
20.
Front Physiol ; 10: 319, 2019.
Article in English | MEDLINE | ID: mdl-30984018

ABSTRACT

Model organisms are often used in biological, medical and environmental research. Among insects, Drosophila melanogaster, Galleria mellonella, Apis mellifera, Bombyx mori, Periplaneta americana, and Locusta migratoria are often used. However, new model organisms still appear. In recent years, an increasing number of insect species has been suggested as model organisms in life sciences research due to their worldwide distribution and environmental significance, the possibility of extrapolating research studies to vertebrates and the relatively low cost of rearing. Beetles are the largest insect order, with their representative - Tribolium castaneum - being the first species with a completely sequenced genome, and seem to be emerging as new potential candidates for model organisms in various studies. Apart from T. castaneum, additional species representing various Coleoptera families, such as Nicrophorus vespilloides, Leptinotarsa decemlineata, Coccinella septempunctata, Poecilus cupreus, Tenebrio molitor and many others, have been used. They are increasingly often included in two major research aspects: biomedical and environmental studies. Biomedical studies focus mainly on unraveling mechanisms of basic life processes, such as feeding, neurotransmission or activity of the immune system, as well as on elucidating the mechanism of different diseases (neurodegenerative, cardiovascular, metabolic, or immunological) using beetles as models. Furthermore, pharmacological bioassays for testing novel biologically active substances in beetles have also been developed. It should be emphasized that beetles are a source of compounds with potential antimicrobial and anticancer activity. Environmental-based studies focus mainly on the development and testing of new potential pesticides of both chemical and natural origin. Additionally, beetles are used as food or for their valuable supplements. Different beetle families are also used as bioindicators. Another important research area using beetles as models is behavioral ecology studies, for instance, parental care. In this paper, we review the current knowledge regarding beetles as model organisms and their practical application in various fields of life science.

SELECTION OF CITATIONS
SEARCH DETAIL
...