Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 96(11)2020 10 24.
Article in English | MEDLINE | ID: mdl-32816009

ABSTRACT

The aim of this work was to assess the temporal patterns in the community composition of phytoplankton (PCC) and bacterioplankton (BCC) in two interconnected and hypertrophic Pampean shallow lakes in Argentina. Factors shaping their community dynamics and community temporal covariations were also analysed. We performed 4 years of seasonal samplings (2012-2016) and communities were studied by the Utermöhl approach (PCC) and Illumina MiSeq sequencing (BCC). We found marked seasonal variations in both communities and inter-annual variations with decreasing microbial community similarities during the study. We also observed covariation in community-level dynamics among PCC and BCC within and between shallow lakes. The within-lake covariations remained positive and significant, while controlling for the effects of intrinsic (environmental) and extrinsic (temporal and meteorological) factors, suggesting a community coupling mediated by intrinsic biotic interactions. Algal-bacterial associations between different taxa of phytoplankton and bacterioplankton within each lake were also found. PCC was mainly explained by pure regional extrinsic (17-21%) and intrinsic environmental (8-9%) factors, while BCC was explained by environmental (8-10%) and biotic interactions with phytoplankton (7-8%). Our results reveal that the influence of extrinsic regional factors can be channeled to bacterioplankton through both environmental (i.e. water temperature) and phytoplankton effects.


Subject(s)
Lakes , Phytoplankton , Argentina , Bacteria/genetics , Seasons
2.
Clin Exp Immunol ; 187(1): 160-173, 2017 01.
Article in English | MEDLINE | ID: mdl-27681197

ABSTRACT

We have reported previously that T cells from patients with multi-drug-resistant tuberculosis (MDR-TB) express high levels of interleukin (IL)-17 in response to the MDR strain M (Haarlem family) of Mycobacterium tuberculosis (M. tuberculosis). Herein, we explore the pathways involved in the induction of Th17 cells in MDR-TB patients and healthy tuberculin reactors [purified protein derivative healthy donors (PPD+ HD)] by the M strain and the laboratory strain H37Rv. Our results show that IL-1ß and IL-6 are crucial for the H37Rv and M-induced expansion of IL-17+ interferon (IFN)-γ- and IL-17+ IFN-γ+ in CD4+ T cells from MDR-TB and PPD+ HD. IL-23 plays an ambiguous role in T helper type 1 (Th1) and Th17 profiles: alone, IL-23 is responsible for M. tuberculosis-induced IL-17 and IFN-γ expression in CD4+ T cells from PPD+ HD whereas, together with transforming growth factor (TGF-ß), it promotes IL-17+ IFN-γ- expansion in MDR-TB. In fact, spontaneous and M. tuberculosis-induced TGF-ß secretion is increased in cells from MDR-TB, the M strain being the highest inducer. Interestingly, Toll-like receptor (TLR)-2 signalling mediates the expansion of IL-17+ IFN-γ- cells and the enhancement of latency-associated protein (LAP) expression in CD14+ and CD4+ T cells from MDR-TB, which suggests that the M strain promotes IL-17+ IFN-γ- T cells through a strong TLR-2-dependent TGF-ß production by antigen-presenting cells and CD4+ T cells. Finally, CD4+ T cells from MDR-TB patients infected with MDR Haarlem strains show higher IL-17+ IFN-γ- and lower IL-17+ IFN-γ+ levels than LAM-infected patients. The present findings deepen our understanding of the role of IL-17 in MDR-TB and highlight the influence of the genetic background of the infecting M. tuberculosis strain on the ex-vivo Th17 response.


Subject(s)
Immunologic Memory , Interleukin-17/metabolism , Interleukin-23/metabolism , Mycobacterium tuberculosis/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Tuberculosis, Multidrug-Resistant/immunology , Tuberculosis, Pulmonary/immunology , Adult , Cells, Cultured , Drug Resistance, Multiple, Bacterial , Female , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Signal Transduction , Species Specificity , Th17 Cells/microbiology , Toll-Like Receptor 2/metabolism , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Pulmonary/microbiology , Young Adult
3.
Clin Exp Immunol ; 175(2): 235-45, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24134738

ABSTRACT

Tuberculous pleural effusion is characterized by a T helper type 1 (Th1) profile, but an excessive Th1 response may also cause tissue damage that might be controlled by regulatory mechanisms. In the current study we investigated the role of regulatory T cells (Treg ) in the modulation of Th1 responses in patients with tuberculous (TB) pleurisy. Using flow cytometry we evaluated the proportion of Treg (CD4(+) CD25(high) forkhead box protein 3(+) ), interferon (IFN)-γ and interleukin (IL)-10 expression and CD107 degranulation in peripheral blood (PB) and pleural fluid (PF) from patients with TB pleurisy. We demonstrated that the proportion of CD4(+) CD25(+) , CD4(+) CD25(high) FoxP3(+) and CD8(+) CD25(+) cells were increased in PF compared to PB samples. Mycobacterium tuberculosis stimulation increased the proportion of CD4(+) CD25(low/neg) IL-10(+) in PB and CD4(+) CD25(low/neg) IFN-γ(+) in PF; meanwhile, CD25(high) mainly expressed IL-10 in both compartments. A high proportion of CD4(+) CD107(+) and CD8(+) CD107(+) cells was observed in PF. Treg depletion enhanced the in-vitro M. tuberculosis-induced IFN-γ and CD4(+) and CD8(+) degranulation responses and decreased CD4(+) IL-10(+) cells in PF. Our results demonstrated that in TB pleurisy Treg cells effectively inhibit not only IFN-γ expression but also the ability of CD4(+) and CD8(+) cells to degranulate in response to M. tuberculosis.


Subject(s)
Cell Degranulation/immunology , Interferon-gamma/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Pleural Effusion/immunology , T-Lymphocytes, Regulatory/immunology , Tuberculosis, Pleural/immunology , Adult , CD8-Positive T-Lymphocytes/immunology , Female , Forkhead Transcription Factors/metabolism , Humans , Interleukin-10/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mycobacterium tuberculosis/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...