Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 565, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100598

ABSTRACT

The biogeography of bacterial communities is a key topic in Microbial Ecology. Regarding continental water, most studies are carried out in the northern hemisphere, leaving a gap on microorganism's diversity patterns on a global scale. South America harbours approximately one third of the world's total freshwater resources, and is one of these understudied regions. To fill this gap, we compiled 16S rRNA amplicon sequencing data of microbial communities across South America continental water ecosystems, presenting the first database µSudAqua[db]. The database contains over 866 georeferenced samples from 9 different ecoregions with contextual environmental information. For its integration and validation we constructed a curated database (µSudAqua[db.sp]) using samples sequenced by Illumina MiSeq platform with commonly used prokaryote universal primers. This comprised ~60% of the total georeferenced samples of the µSudAqua[db]. This compilation was carried out in the scope of the µSudAqua collaborative network and represents one of the most complete databases of continental water microbial communities from South America.


Subject(s)
Microbiota , Bacteria/genetics , Databases, Genetic , High-Throughput Nucleotide Sequencing , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , South America , Water Microbiology
2.
Environ Pollut ; 292(Pt B): 118382, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34666097

ABSTRACT

Glyphosate-based herbicides (GBH) -the most widely used herbicides in agriculture worldwide-are frequently generalized by the name of "glyphosate". However, GBH encompass a variety of glyphosate salts as active ingredient and different adjuvants, which differ between products. These herbicides reach water bodies and produce diverse impacts over aquatic communities. Yet, the risk assessment assays required for the approval focus mostly on active ingredients. Herein, we compared the effect of five different GBH as well as of monoisopropylamine salt of glyphosate (GIPA) on aquatic microbial communities from natural shallow lakes that were mixed and allowed to evolve in an outdoor pond. We performed an 8-day long assay under indoor control conditions to evaluate the effects of exposure on the structure of nano-plus microphytoplankton (net phytoplankton, with sizes between 2 and 20 µm and >20 µm, respectively) and picoplankton (size ranging between 0.2 and 2 µm) communities through microscopy and flow cytometry, respectively. Significantly different effects were evident on the structure of microbial communities dependent on the GBH, even with herbicides sharing similar active ingredients. Each GBH evoked increases of different magnitude in bacterioplankton abundance. Furthermore, GIPA and a formulation decreased the abundance of a phycocyanin-rich (PC-rich) picocyanobacteria (Pcy) cytometric population and GIPA further altered Pcy composition. Also, two GBH increased net phytoplankton total abundance and, unlike the tested GBH, no apparent effect of GIPA was detected on this community structure. These results demonstrate that GBH effects on aquatic microbial communities should not be summarized as "glyphosate" effects considering that the formulations have effects beyond those exerted by the active ingredients alone. This work intends to alert on the lack of real knowledge regarding the consequences of the variety of GBH on natural aquatic ecosystems. Indeed, the wide use of the term "glyphosate effect" should be thoroughly rethought.


Subject(s)
Herbicides , Microbiota , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/analysis , Herbicides/toxicity , Phytoplankton , Glyphosate
3.
Aquat Toxicol ; 222: 105463, 2020 May.
Article in English | MEDLINE | ID: mdl-32172181

ABSTRACT

Massive use of glyphosate-based herbicides in agricultural activities has led to the appearance of this herbicide in freshwater systems, which represents a potential threat to these systems and their communities. These herbicides can affect autotrophic and heterotrophic picoplankton abundance. However, little is known about glyphosate impact on the whole structure of these assemblages. Herein, we used an 8-day long microcosm approach under indoor controlled conditions to analyze changes in the structure of picoplankton exposed to a single pulse of glyphosate. The analyzed picoplankton correspond to two outdoor ponds with contrasting states: "clear" (chlorophyll-a = 3.48 µg L-1± 1.15; nephelometric turbidity, NTU = 1) and "turbid" (chlorophyll-a = 105.96 µg L-1 ± 15.3; NTU = 48). We evaluated herbicide impact on different picoplankton cytometric populations and further explored changes in bacterial dominant operational taxonomic units (OTUs) fingerprinting. We observed that glyphosate induced a drastic decrease in the abundance of phycocyanin-rich picocyanobacteria. Particularly, in the turbid system this effect resulted in an 85 % decrease in the abundance of the whole autotrophic picoplankton. Glyphosate also changed the structure of the heterotrophic fraction by means of changing bacterial dominant OTUs fingerprinting patterns in both systems and by shifting the relative abundances of cytometric groups in the clear scenario. These results demonstrate that upon glyphosate exposure picoplanktonic fractions face not only the already reported changes in abundance, but also alterations in the composition of cytometric groups and of bacterial dominant operational taxonomic units. This research provides suitable and still little explored tools to analyze agrochemical effects on picoplanktonic communities.


Subject(s)
Autotrophic Processes/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Heterotrophic Processes/drug effects , Plankton/drug effects , Water Pollutants, Chemical/toxicity , Agriculture , Chlorophyll A/metabolism , Cyanobacteria/drug effects , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Fresh Water/chemistry , Glycine/toxicity , Plankton/growth & development , Plankton/metabolism , Glyphosate
4.
Tuberculosis (Edinb) ; 103: 16-23, 2017 03.
Article in English | MEDLINE | ID: mdl-28237029

ABSTRACT

C5a anaphylatoxin is a component of the complement system involved in the modulation of T-cell polarization. Herein we investigated whether C5a receptors, C5aR and C5L2, modulate the cytokine profiles induced by Mycobacterium tuberculosis (Mtb). We analyzed the impact of both receptors on T helper cell polarization induced by the multidrug resistant outbreak strain named M, which is a poor IFN-γ inducer compared with the laboratory strain H37Rv. To this aim, we first blocked C5aR or C5L2 of peripheral blood monocytes (Mo) from patients with tuberculosis and healthy donors, then we stimulated the Mo either with H37Rv or the M strain, and finally we analyzed cytokine profiles of Mo/macrophages (MΦ) and CD4+ T-cells. We found that: (i) Mtb modulated the expression of both C5a receptors, (ii) C5aR inhibited the expansion of CD4+IFN-γ+ lymphocytes stimulated by the M strain but not by H37Rv, (iii) both receptors modulated the Mo/MΦ cytokine expression induced by Mtb. We conclude that C5aR, but not C5L2, plays a role in T helper cell polarization induced by Mtb and that this effect is strain- and donor-dependent. We speculate that the epidemiologically successful M strain takes advantage of this C5aR-mediated inhibition of Th1 polarization to survive within the host.


Subject(s)
Cytokines/immunology , Disease Outbreaks , Mycobacterium tuberculosis/immunology , Receptor, Anaphylatoxin C5a/immunology , Th1 Cells/immunology , Tuberculosis, Multidrug-Resistant/immunology , Adolescent , Adult , Aged , Case-Control Studies , Cells, Cultured , Cytokines/metabolism , Female , Genotype , Host-Pathogen Interactions , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Phenotype , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Th1 Cells/metabolism , Th1 Cells/microbiology , Time Factors , Tuberculosis, Multidrug-Resistant/metabolism , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...