Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Graph Model ; 133: 108875, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39362061

ABSTRACT

Cytochrome P450 (CYP) enzymes play essential roles in the synthesis and metabolic activation of physiologically active substances. CYP has a prosthetic heme (iron protoporphyrin IX) in its active center, where Fe ion (heme-Fe) is deeply involved in enzymatic reactions of CYP. To precisely describe the structure and electronic states around heme-Fe, we modified the force fields (FFs) around heme-Fe in molecular mechanics (MM) simulations and conducted ab initio fragment molecular orbital (FMO) calculations for the CYP-ligand complex. To describe the coordination bond between heme-Fe and its coordinated ligand (ketoconazole), we added FF between heme-Fe and the N atom of ketoconazole, and then the structure of the complex was optimized using the modified FF. Its adequacy was confirmed by comparing the MM-optimized structure with the X-ray crystal one of the CYP-ketoconazole complex. We also performed 100 ns molecular dynamics simulations and revealed that the coordination bonds around heme-Fe were maintained even at 310 K and that the CYP-ketoconazole structure was kept similar to the X-ray structure. Furthermore, we investigated the electronic states of the complex using the ab initio FMO method to identify the CYP residues and parts of ketoconazole that contribute to strong binding between CYP and ketoconazole. The present procedure of constructing FF between heme-Fe and ketoconazole can be applicable to other CYP-ligand complexes, and the modified FF can provide their accurate structures useful for predicting the specific interactions between CYP and its ligands.

2.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063158

ABSTRACT

Tuberculosis (TB), the second leading infectious killer, causes serious public health problems worldwide. To develop novel anti-TB agents, many biochemical studies have targeted the subunit B of DNA gyrase (GyrB), which captures a second DNA segment and responses for ATP hydrolysis. Here, we investigated specific interactions between GyrB residues and existing pyrrolamide derivatives at an electronic level using ab initio fragment molecular orbital (FMO) calculations and designed potent inhibitors against GyrB. The evaluated binding affinities between GyrB and pyrrolamides were confirmed to be consistent with the IC50 values obtained from previous experiments. Thus, we employed the most potent pyrrolamide (compound 1) as a lead compound and proposed novel pyrrolamide derivatives. The specific interactions between GyrB and these derivatives were investigated using molecular mechanic optimizations and FMO calculations. The results revealed that our proposed derivatives had strong hydrogen bonds with Asp79 and Arg141 and exhibited electrostatic interactions with Glu56 and Ile84 of GyrB. In addition, the binding affinity between GyrB and compound 1 was enhanced significantly by the replacement at the R3 site of compound 1. The present results may provide structural concepts for the rational design of potent GyrB inhibitors as anti-TB agents.Communicated by Ramaswamy H. Sarma.

3.
Molecules ; 28(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138525

ABSTRACT

Alzheimer's disease (AD) is a neurological disease, and its signs and symptoms appear slowly over time. Although current Alzheimer's disease treatments can alleviate symptoms, they cannot prevent the disease from progressing. To accurately diagnose and treat Alzheimer's disease, it is therefore necessary to establish effective methods for diagnosis. Apolipoprotein E4 (ApoE4), the most frequent genetic risk factor for AD, is expressed in more than half of patients with AD, making it an attractive target for AD therapy. We used molecular docking simulations, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations to investigate the specific interactions between ApoE4 and the naturally occurring compounds found in the plant Moringa Oleifera. According to the FMO calculations, quercetin had the highest binding affinity to ApoE4 among the sixteen compounds because its hydroxyl groups generated strong hydrogen bonds with the ApoE4 residues Trp11, Asp12, Arg15, and Asp130. As a result, we proposed various quercetin derivatives by introducing a hydroxyl group into quercetin and studied their ApoE4 binding properties. The FMO data clearly showed that adding a hydroxyl group to quercetin improved its binding capacity to ApoE4. Furthermore, ApoE4 Trp11, Asp12, Arg15, and Asp130 residues were discovered to be required for significant interactions between ApoE4 and quercetin derivatives. They had a higher ApoE4 binding affinity than our previously proposed epicatechin derivatives. Accordingly, the current results evaluated using the ab initio FMO method will be useful for designing potent ApoE4 inhibitors that can be used as a candidate agent for AD treatment.


Subject(s)
Alzheimer Disease , Moringa oleifera , Humans , Molecular Docking Simulation , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Quercetin/pharmacology
4.
Biophys Chem ; 296: 106990, 2023 05.
Article in English | MEDLINE | ID: mdl-36898350

ABSTRACT

Alzheimer's disease (AD), one of the most common neurodegenerative diseases, is a major factor contributing to cognitive impairment in older adults. Current therapeutic treatments can only relieve the symptoms of AD, but they cannot stop the progression of the disease because it takes a long time for clinical symptoms to manifest. Therefore, it is essential to develop effective diagnostic strategies for early detection and treatment of AD. As the most common genetic risk factor for AD, apolipoprotein E4 (ApoE4) is present in more than half of patients with AD, and it can be a target protein for AD therapy. We used molecular docking, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations to investigate the specific interactions between ApoE4 and Cinnamon-derived compounds. Of the 10 compounds, epicatechin was found to have the highest binding affinity to ApoE4 because the hydroxyl groups of epicatechin form strong hydrogen bonds with the Asp130 and Asp12 residues of ApoE4. Therefore, we proposed some epicatechin derivatives by adding a hydroxyl group to epicatechin and studied their interactions with ApoE4. The FMO results indicate that the addition of a hydroxyl group to epicatechin increases its binding affinity to ApoE4. It is also revealed that the Asp130 and Asp12 residues of ApoE4 are important for the binding between ApoE4 and the epicatechin derivatives. These findings will help propose potent inhibitors against ApoE4, leading to a proposal for effective therapeutic candidates for AD.


Subject(s)
Alzheimer Disease , Catechin , Humans , Aged , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Molecular Docking Simulation , Cinnamomum zeylanicum/metabolism , Spices
SELECTION OF CITATIONS
SEARCH DETAIL