Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 43(1): 145-55, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21726817

ABSTRACT

Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with coregulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate that a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model in which the basal occupancy of transcription factors acts to prime chromatin and direct inducible transcription factors to select regions in the genome.


Subject(s)
Chromatin/metabolism , Models, Genetic , Receptors, Glucocorticoid/metabolism , Transcription Factor AP-1/physiology , Animals , Binding Sites , Cell Line , Chromatin/chemistry , Gene Expression Regulation , Genome , Ligands , Mice , Receptors, Glucocorticoid/chemistry , Regulatory Elements, Transcriptional , Transcription Factor AP-1/chemistry
2.
EMBO J ; 30(15): 3028-39, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21701563

ABSTRACT

Cell-selective glucocorticoid receptor (GR) binding to distal regulatory elements is associated with cell type-specific regions of locally accessible chromatin. These regions can either pre-exist in chromatin (pre-programmed) or be induced by the receptor (de novo). Mechanisms that create and maintain these sites are not well understood. We observe a global enrichment of CpG density for pre-programmed elements, and implicate their demethylated state in the maintenance of open chromatin in a tissue-specific manner. In contrast, sites that are actively opened by GR (de novo) are characterized by low CpG density, and form a unique class of enhancers devoid of suppressive effect of agglomerated methyl-cytosines. Furthermore, treatment with glucocorticoids induces rapid changes in methylation levels at selected CpGs within de novo sites. Finally, we identify GR-binding elements with CpGs at critical positions, and show that methylation can affect GR-DNA interactions in vitro. The findings present a unique link between tissue-specific chromatin accessibility, DNA methylation and transcription factor binding and show that DNA methylation can be an integral component of gene regulation by nuclear receptors.


Subject(s)
DNA Methylation , DNA/metabolism , Enhancer Elements, Genetic , Receptors, Glucocorticoid/metabolism , Animals , Cell Line , Chromatin/metabolism , Mice , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...